Фармацевтический анализ (ФА). Он является основой фармацевтической химии и имеет свои особенности, отличающие его от других видов анализа. Они заключаются в том, что анализу подвергаются вещества различной химической природы: неорганические, элементоорганические, радиоактивные, органические соединения от простых алифатических до сложных природных БАВ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов.

Ежегодное пополнение арсенала лекарственных средств вызывает необходимость разработки новых способов их анализа. Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований как к качеству лекарственных средств, так и к количественному содержанию в них БАВ. Вот почему к фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативным требованиям Государственной фармакопеи X и XI и другой НТД (ФС, ГОСТ), выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых препаратов и реактивов.

В зависимости от поставленных задач фармацевтический анализ включает различные формы контроля качества лекарственных средств: фармакопейный анализ; постадийный контроль производства лекарств; анализ лекарственных форм индивидуального изготовления; экспресс-анализ в условиях аптеки и биофармацевтический анализ. Составной его частью является фармакопейный анализ, который представляет собой совокупность способов исследований лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой НТД (ФС, ФСП, ГОСТ). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям Государственной фармакопеи или другой НТД. При отклонении от этих требований лекарство не допускается к применению.

Химический анализ растительного сырья. По технике выполнения и характеру получаемых результатов химические реакции делят на несколько групп: качественные, микрохимические и гистохимические, микросублимация.

Для установления подлинности лекарственного растительного сырья используют простейшие качественные реакции и хроматографические пробы на действующие и сопутствующие вещества. Методика изложена в соответствующей нормативной документации на исследуемый вид сырья в разделе «Качественные реакции».

Качественные реакции выполняют на сухом сырье с такими видами сырья: кора дуба, калины, крушины, корневища бадана, корневища и корни девясила, корни одуванчика, алтея, женьшеня, барбариса, цветки липы, семена льна, склероции спорыньи (всего для 12 видов сырья).

В основном качественные реакции проводят с извлечением (вытяжкой) из лекарственного растительного сырья.

Исходя из свойств биологически активных веществ, их извлекают из сырья водой, спиртом различной концентрации или органическим растворителем, реже с добавлением щелочи или кислоты.

Водное извлечение готовят из сырья, содержащего гликозиды, полисахариды, сапонины, фенологликозиды, антрагликозиды, дубильные вещества. Подкисленной водой извлекают из сырья алкалоиды в виде солей.

Большую группу биологически активных веществ (сердечные гликозиды, кумарины, лигнаны, флавоноиды) извлекают этиловым и метиловым спиртом различной концентрации.

Если реакция достаточно специфична и чувствительна, то ее проводят с неочищенным экстрактом из сырья.

К таким реакциям относятся:

общеалкалоидные осадочные реакции;

реакции с раствором хлорида алюминия на флавоноиды (трава зверобоя, горца птичьего, горца перечного и др.);

проба Синода на флавоноиды в цветках бессмертника;

реакция с раствором щелочи на антраценпроизводные (кора крушины, корни ревеня и др.);

реакция с раствором железоаммонийных квасцов на дубильные веществ (кора дуба, корневища змеевика, бадана и др.).

Часто проведению реакции мешают сопутствующие вещества (белки, амины, стерины, хлорофилл). В этом случае используют очищенное извлечение (например, из сырья, содержащего сердечные гликозиды, кумарины, алкалоиды, фенологликозиды, лигнаны).

Очищают извлечение осаждением сопутствующих веществ раствором ацетата свинца и сульфата натрия или используют прием смены растворителей либо метод распределительной хроматографии.

Микрохимические реакции проводят обычно одновременно с микроскопическим анализом, наблюдая результаты под микроскопом:

на эфирное и жирное масло с раствором Судан III;

на одревесневшие лигнифицированные элементы с раствором флороглюцина и 25%-ным раствором серной кислоты или концентрированной хлороводородной кислоты.

На кору дуба (порошок) проводят реакцию с железоаммонийными квасцами и результат реакции изучают под микроскопом.

Гистохимические реакции - это такие реакции, с помощью которых можно выявить те или иные соединения непосредственно в клетках или структурах, где они локализуются.

По Государственной фармакопее XI, гистохимические реакции проводят на слизь с раствором туши в корнях алтея и семенах льна.

Микросублимация - непосредственное выделение из сухого растительного материала веществ, которые легко возгоняются при нагревании. Полученный сублимат исследуют под микроскопом, затем проводят микрохимическую реакцию с соответствующим реактивом.

Методы определения подлинности лекарственного растительного сырья. Подлинность сырья определяется макроскопическим, микроскопическим, химическим и люминесцентным анализами.

Макроскопический анализ. Для его проведения следует знать морфологию растений. Изучают внешний вид сырья невооруженным глазом или с помощью лупы, измеряют размеры частиц с помощью миллиметровой линейки. При дневном освещении определяют цвет сырья с поверхности, на изломе и на разрезе. Запах устанавливают при растирании или разломе растений, а вкус - только у неядовитых растений. При изучении внешнего вида обращают внимание на морфологические признаки частей сырья.

Микроскопический анализ. Используют для определения подлинности измельченного лекарственного растительного сырья. Для этого нужно знать анатомическую структуру растений в целом и характерные для конкретного растения признаки, отличающие его от других растений.

Химический анализ. Предусматривает проведение качественных, микрохимических, гистохимических реакций и сублимации для определения в сырье действующих или сопутствующих веществ. Микрохимические реакции целесообразно проводить параллельно с микроскопическим анализом. Гистохимические реакции проводят для выявления конкретных соединений в местах их локализации в растении. Под сублимацией понимают получение из растительного сырья легко возгоняемых при нагревании веществ с последующей качественной реакцией с сублиматом.

Люминесцентный анализ. Это метод исследования различных объектов (в том числе и биологических), основанный на наблюдении их люминесценции. Люминесценция - свечение газа, жидкости или твердого тела, обусловленное не нагревом тела, а нетепловым возбуждением его атомов и молекул. Люминесцентный анализ проводят для определения в лекарственном сырье веществ, обладающих люминесценцией.

Контроль качества органотерапевтических препаратов. Для проверки соответствия качества желез требованиям стандарта от каждой партии отбирают 5 % ящиков или пакетов, но не менее пяти таких упаковок. Если в одном из вскрытых ящиков или пакетов железы не соответствуют требованиям соответствующего стандарта хотя бы по одному из показателей, то проверяют всю партию.

Для единичных видов сырья имеются объективные (лабораторные) методы оценки его качества.

Объективно качество поджелудочной железы, предназначенной для производства инсулина, согласно ГОСТу, определяют по показателям массовой доли жира и массовой доли инсулина с помощью соответствующих лабораторных методов.

Массовую долю жира определяют жиромером. Массовую долю инсулина проверяют по требованию потребителя иммунореактивным методом с помощью антисыворотки, иммуноглобулинов в гомогенизированной железе.

Качество слизистой оболочки (эпителия) языков крупного рогатого скота проверяют путем определения величины pH консервирующей среды с эпителием и ее бактериальной обсемененности. Сущность метода заключается в определении общего количества микробов в 1 мл консервирующей среды с эпителием.

Качество стекловидного тела глаз крупного рогатого скота, свиней, овец и коз замороженного определяют по количественному содержанию гиалуроновой кислоты (по глюкозамину) в стекловидном теле. Принцип метода основан на определении глюкоза-мина в продуктах гидролиза гиалуроновой кислоты, который является составной частью молекулы гиалуроновой кислоты и находится в прямой зависимости от содержания его в стекловидном теле.

Биологическую активность гипофизов определяют в единицах действия АКТГ, содержащегося в 1 мг кислого ацетонированного порошка (КАП), полученного из гипофизов.

Определение активности АКТГ основано на его способности вызывать редукцию лимфоидной ткани, в частности зобной железы крысят. За единицу действия препарата принимают ту ежедневную дозу препарата, которая при введении в течение пяти суток вызывает уменьшение массы железы на 50±5 %.

Качество паращитовидных желез определяют гистологическим методом. На срезах паращитовидных желез просматриваются скопления эпителиальных клеток с выраженной базофильной зернистостью. На срезах лимфатических желез просматривается ретикулярная ткань (в виде однородной массы), окруженная плотной соединительной оболочкой (капсулой), от которой внутрь отходят ясно видимые соединительные тяжи. Государственным стандартом предусмотрено, что в пробе из 40 желез может содержаться не более одного лимфатического узла.

Методы определения качества сухих биологических препаратов. Сухие биологические препараты имеют ряд преимуществ по сравнению с традиционными жидкими биопрепаратами благодаря лучшему качеству, меньшей массе, возросшему сроку хранения, удобству транспортирования.

Физические методы. 1.Метод определения вакуума. Сущность метода заключается в способности высокочастотного электрического тока при большом напряжении вызывать в газах свечение, характер которого изменяется в зависимости от степени разреженности воздуха в ампуле (флаконе).

Отбор проб. Отбор проб проводят в соответствии с правилами, установленными в государственных стандартах на сухие биологические препараты.

Аппаратура и оборудование. При проведении испытания используют: аппарат типа «Д’Арсеналь» или «Тесла», штатив для ампул, стол металлический.

Проведение испытания. Подготовка к испытанию:

перед испытанием проверяют внешний вид, плотность укупоривания флаконов, наличие трещин, запайку ампул.

Аппарат выдерживают в течение 10 мин после включения. Испытуемые ампулы устанавливают в штативе, затем к ним подводят электрод на расстояние 1 см. При определении вакуума с помощью аппарата «Тесла» один металлический электрод аппарата заземляют через металлический стол, на котором разложены ампулы, а другой подводят к проверяемым ампулам. Экспозиция не более 1 с.

Обработка результатов. Появление свечения внутри ампул с характерным потрескиванием указывает на наличие в них вакуума.

Степень разрежения воздуха в проверяемых ампулах определяют по характеру свечения газов в проверяемых ампулах в соответствии с нижеследующими данными.

Определение степени разрежения воздуха в проверяемых ампулах

2. Метод определения в л а ж н о с т и. Сущность метода заключается в определении уменьшения массы пробы препарата после ее высушивания в течение 1 ч при температуре 105 °С.

Отбор проб. Для испытания из разных мест упаковки отбирают необходимое количество ампул (флаконов) с учетом требований к массе проб (в соответствии со стандартом).

При отборе проб проверяют герметичность ампул. У флаконов с лиофилизированным препаратом проверяют стенку и дно на целостность, а также полноту прилегания закатанного колпачка и резиновой пробки. При наличии дефектов флакон заменяют другим. Каждую ампулу, запаянную под вакуумом, перед извлечением из нее препарата проверяют на герметичность.

Аппаратура, материалы и реактивы. При проведении испытания используют: весы лабораторные, шкаф сушильный лабораторный, термометры ртутные, эксикатор, бюксы стеклянные, вазелин технический, кальций хлористый безводный или гипс обезвоженный, или силикагель прокаленный.

Подготовка к испытанию. Сушильный шкаф проверяют максимальными термометрами на равномерность нагрева.

При высушивании проб в бюксах нижняя часть контрольного термометра должна находиться на уровне бюкс. Показания контрольного термометра являются определяющими для настройки температуры в шкафу.

Весы должны быть установлены на прочном столе без вибрации. Результаты всех взвешиваний регистрируют в граммах с точностью до четвертого десятичного знака.

Нижняя часть эксикатора должна быть заполнена обезвоженным хлористым кальцием или гипсом, или силикагелем. Пришлифованные края сосуда слегка смазывают техническим вазелином.

Для каждого анализа должны быть подготовлены три бюксы одинаковых диаметров и высоты.

Проведение испытания. Для определения влажности используют три ампулы, если в каждой из них масса пробы не менее 0,1 г. Если ампула содержит менее 0,1 г биологического препарата, то можно использовать две и более ампул.

Отобранную пробу, растолченную до порошкообразного состояния, помещают ровным слоем в предварительно взвешенную бюксу.

Бюксы устанавливают в сушильный шкаф на полку. Началом сушки следует считать время достижения температуры 105 °С по контрольному термометру. Продолжительность сушки 60 мин.

После окончания сушки бюксы быстро закрывают крышками и переносят в эксикатор для охлаждения до комнатной температуры, после чего бюксы взвешивают с точностью до четвертого знака и регистрируют по форме.

3. Метод определения количества кислорода. Отбор проб. Отбор проб проводят в соответствии с правилами, установленными в государственных стандартах на сухие биологические препараты.

Аппаратура, материалы и реактивы. При проведении испытания используют: хроматограф газовый марки ЛXM-8МД или других аналогичных марок с детектором по теплопроводимости и газохромографической колонкой диаметром 3 мм и длиной 1000 мм, печь муфельную с температурой нагрева до 1000 °С, измеритель расхода газа с бюреткой, секундомер, шприц медицинский вместимостью 1 см 3 , сетки проволочные тканые, лупу измерительную, эксикатор, ступку фарфоровую, линейку металлическую длиной 30 см, сита молекулярные - цеолит синтетический марки СаА, иглу медицинскую, трубку медицинскую резиновую внутренним диаметром 4,2 мм, длиной 10 м, бутыль вместимостью 3000 см 3 , пробку резиновую, масло силиконовое, гелий, азот газообразный, воду дистиллированную.

Подготовка к испытанию. Подготовка колонки. Синтетический цеолит измельчают в фарфоровой ступке, отсеивают на ситах, промывают дистиллированной водой, высушивают и прокаливают в муфельной печи при температуре 450...500 °С в течение 2 ч, затем охлаждают в эксикаторе на сетках до комнатной температуры.

Хроматографическую колонку устанавливают вертикально и засыпают синтетическим цеолитом. Колонку не досыпают на 1 см и закупоривают сеткой. Заполненную колонку устанавливают в термостате хроматографа и, не присоединяя к детектору, пропускают через нее поток гелия или азота в течение 3 ч при температуре 160... 180 °С. Затем колонку присоединяют к детектору и продолжают через нее пропускать гелий или азот, пока не прекратится дрейф нулевой линии при максимальной чувствительности детектора.

Подготовку хроматографа к работе и включение выполняют в соответствии с заводской инструкцией.

Подготовка флакона с препаратом к испытанию. Для отбора пробы из флакона с препаратом выравнивают давление газа во флаконе с атмосферным давлением.

Подготовка медицинского шприца. Предварительно устанавливают на штоке шприца металлическую трубку и проверяют шприц на герметичность. Проверенным и подготовленным к отбору газа медицинским шприцем с иглой прокалывают резиновую трубку, по которой выходит гелий из колонки сравнения хроматографа, и дважды медленно шприцем набирают и выпускают гелий. В третий раз, набрав гелий в шприц и расположив его иглой вниз, отбирают пробы газа из флакона с препаратом.

Проведение испытания. Из каждого флакона отбирают две пробы газа и последовательно одну за другой с интервалом 3...4 мин вводят в испаритель хроматографа. Пробу в испаритель вводят плавным нажатием пальца на шток. Через 110... 120 с после ввода пробы на хроматограмме самописец вычерчивает пик кислорода, а затем пик азота.

Обработка результатов. Рассчитывают площадь пиков кислорода и азота. Для этого на хроматографе измеряют высоту и ширину пиков кислорода и азота с помощью металлической линейки длиной 30 см, увеличительной лупы и остро заточенного карандаша. Высоту пиков измеряют от базовой линии до вершины пика, ширину пика - на половине его высоты. При измерениях берут расстояние от внутренней толщины линии пика до наружной.

Площадь пиков кислорода (SО 2 , мм 2) и азота (5N 2 , мм 2) вычисляют по формулам

SО 2 = h 1 *b 1 ; SN = h 2 *b 2 ,

где h 1 h 2 ~ высота пиков кислорода и азота, мм; b 1 , b 2 - ширина пиков кислорода и азота, мм.

Объемную долю кислорода (X, %) в каждой пробе газа вычисляют по формуле

X=SO 2 /(SO 2 +SN 2)

где SO 2 , SN 2 - площади пиков кислорода и азота, мм 2 .

За окончательный результат испытания принимают среднее арифметическое результатов определений в трех флаконах препарата.

Относительная приведенная погрешность метода при доверительной вероятности Р- 0,95 не должна превышать 10 %.

Бактериологический метод. Контроль стерильности. Сущность метода заключается в микробиологической оценке отсутствия роста бактерий и грибов в высевах препаратов на питательные среды.

Отбор проб. От каждой серии препаратов отбирают пробы в количестве 0,15 % флаконов, но не менее пяти для жидких и 10 ампул для сухих препаратов.

Подготовка к испытанию. Лабораторную посуду кипятят в течение 15 мин в дистиллированной воде, подкисленной раствором соляной кислоты, а затем промывают водопроводной водой и моют ершом в растворе, содержащем на 1000 см 3 дистиллированной воды 30 г стирального порошка и 50 см 3 водного аммиака. После этого посуду тщательно промывают сначала водопроводной водой, а затем три раза дистиллированной водой, высушивают и стерилизуют.

Перед стерилизацией посуду укладывают в металлические пеналы. Стерилизуют посуду в автоклаве при 0,15 МПа в течение 60 минут.

Готовые питательные среды, проверенные на ростовые свойства, разливают по 6...8 см 3 (для определения анаэробов по 10...12 см 3) в пробирки, по 50...60 см 3 во флаконы вместимостью 100 см 3 .

Пробы сухих биологических препаратов предварительно растворяют стерильным растворителем (изотонический раствор хлорида натрия, дистиллированная вода и т. д.).

Проведение испытания. 1. Проведение испытания на стерильность с использованием тиогликолевой среды.

Из каждого флакона препарата производят посев по 1 см 3 в три пробирки, содержащие тиогликолевую среду.

Две засеянные пробирки выдерживают в термостате в течение 14сут: одну -при температуре 21 °С, другую -при температуре 37 °С.

Третью пробирку выдерживают в течение 7 сут при температуре 37 °С и затем делают из нее пересевы по 0,5 см 3 по одной пробирке на скошенный казеиновый агар, казеиновый питательный бульон, среду Сабуро и по 1 см 3 на казеиновый питательный бульон под вазелиновым маслом с кусочками мяса или печени.

Пересевы на казеиновый агар, мясопептонный бульон выдерживают еще в течение 7 сут при температуре 37 °С, а пересев на среду Сабуро - при температуре 21 °С.

При испытании проб препаратов проводят контроль стерильности сред: три пробирки с каждой средой выдерживают в термостате в течение 14 сут при 37 °С, со средой Сабуро - при температуре 21 °С.

2. Проведение испытания на стерильность без тиогликолевой среды.

Из каждой пробы препарата производят посев на жидкую среду Сабуро, мясопептонный агар и мясопептонный бульон - по три пробирки; на среду Тароцци - по две пробирки и два флакона.

Для выявления аэробов высевают 0,5 см 3 посевного материала в одну пробирку и 1...2 см 3 в один флакон, а для выявления анаэробов - соответственно по 1 и 5 см 3 . Посевы помещают в термостат (при температуре 37 °С; для Сабуро - при температуре 21 °С) на 7 сут (15 сут для анаэробов). Затем делают пересев (кроме посевов на мясопептонном агаре). Пересевают на те же среды. Выдерживают 7 сут (15 сут для анаэробов). Проводят контроль стерильности.

Оценка результатов. Учитывают результаты первичного и повторного посевов путем макроскопического, а в случае роста микроорганизмов - микроскопического исследования всех посевов, учитывают через 14 сут после первичного посева на тиогликолевой среде и через 7 сут после первичного посева без тиогликолевой среды. Среду считают стерильной, если ни в одной из засеянных пробирок не наблюдается рост.

В случаях роста хотя бы в одной из засеянных пробирок контроль стерильности повторяют на том же количестве проб и проводят микроскопию выросших микробов. Мазки окрашивают по Граму, отмечая морфологию.

При отсутствии роста в повторном контроле препарат считают стерильным. При наличии роста хотя бы в одной из пробирок и идентичности микрофлоры при первичном и повторном посевах препарат считают нестерильным.

Если при первичном и повторном посевах выявлена различная микрофлора, а также выявлен рост лишь в отдельных пробирках, проводят посев образцов в третий раз.

При отсутствии роста препарат считают стерильным. При обнаружении роста хотя бы в одной пробирке независимо от характера микрофлоры препарат считают нестерильным.

Нормативные требования к качеству готовых лекарственных форм. Лекарственные формы изготовляют на заводах, фармацевтических фабриках (официальные лекарственные средства) и в аптеках (магистральные лекарственные средства). Контроль готовых лекарственных форм на фармацевтических предприятиях осуществляют в соответствии с требованиями НТД (Государственной фармакопеи, ФС, ФСП, ГОСТов). В соответствии с требованиями этих документов лекарственные формы должны подвергаться проверке (В. Д. Соколов, 2003).

Таблетки испытывают на распадаемость. Если нет других указаний в частной статье, то таблетки должны распадаться в течение 15 мин, а покрытые оболочкой не более 30 мин. Кишечнорастворимые таблетки не должны распадаться в течение 1 ч в растворе соляной кислоты, но должны распадаться в течение 1 ч в растворе натрия гидрокарбоната. Прочность таблеток на истирание должна быть не менее 75 %. Лекарственное средство, содержащееся в таблетке, должно растворяться в воде за 45 мин не менее чем на 75 %. Среднюю массу определяют взвешиванием 20 таблеток с точностью до 0,001 г. Допускаются отклонения от средней массы: ±7,5%-для таблеток массой 0,1...0,3 г и ±5%-для таблеток массой 0,5 г и более. В таблетках также контролируют содержание талька.

Гранулы - определяют размер с помощью ситового анализа. Диаметр ячейки должен быть 0,2...3 мм, а число более мелких и более крупных гранул не должно превышать 5 %. Испытание распадаемости гранул из навески 0,5 г такое же, как и у таблеток. Время распадаемости не должно превышать 15 мин. Определяют влагу. Для выявления содержания лекарственного вещества берут навеску не менее чем из 10 растертых гранул.

Капсулы - контролируют среднюю массу. Отклонение от нее каждой капсулы не должно превышать ±10 %. Подобно тому как это проводят с таблетками, контролируют распадаемость и растворимость, а также определяют однородность дозирования для капсул, содержащих 0,05 г и менее лекарственного вещества. Количественное определение лекарственных веществ выполняют по специальным методикам, используя для этих целей содержимое от 20 до 60 капсул.

Порошки - устанавливают отклонения в массе дозированных порошков. Они могут быть ±15% при массе порошка до 0,1 г; ±10 % - от 0,1 до 0,3 г; ±5 % - от 0,3 до 1; ±3 % - свыше 1 г.

Суппозитории - визуально определяют однородность на продольном разрезе. Среднюю массу устанавливают взвешиванием с точностью до 0,01 г, отклонения не должны превышать ± 5 %. Суппозитории, изготовленные на липофильных основаниях, контролируют по температуре плавления. Она не должна превышать

37 °С. Если эту температуру установить невозможно, то определяют время полной деформации, которое должно быть не более 15 мин. Суппозитории, изготовленные на гидрофильной основе, испытывают на растворимость (показатель «растворение»). Определяют время растворения при температуре (37±1) °С, которое не должно превышать 1 ч. Количественное определение лекарственных веществ проводят по специальным методикам.

Настойки - определяют содержание спирта или плотность. Содержание действующих веществ устанавливают с помощью специальных методик. Кроме того, определяют сухой остаток после выпаривания в бюксе 5 мл настойки досуха и высушивания его в течение 2 ч при температуре (102,5±2,5) °С. В таком же объеме настойки после сжигания и прокаливания ее смеси с 1 мл концентрированной серной кислоты определяют содержание тяжелых металлов.

Экстракты - как и в настойках, определяют плотность или содержание спирта, действующих веществ, тяжелых металлов. Устанавливают также сухую массу остатка, а в густых и сухих экстрактах - содержание влаги [высушиванием в сушильном шкафу при температуре (102,5±2,5) °С).

Аэрозоли - измеряют давление внутри баллона с помощью манометра при комнатной температуре (если пропеллентом служит сжатый газ). Проверяют упаковку на герметичность. В дозированных упаковках определяют среднюю массу препарата в одной дозе, отклонение в которой допускается не более +20 %. Устанавливают процент выхода содержимого путем удаления его из баллона с последующим взвешиванием. Количественное определение вещества проводят в соответствии с требованиями частных статей Государственной фармакопеи. Отклонения от изложенных количеств не должно превышать ±15 %.

Мази - общим испытанием является метод определения размера частиц лекарственного вещества в мазях. Используют микроскоп с окулярным микрометром МОВ-1.

Пластыри. Состав, показатели качества, методики испытаний бывают разные и изложены в нормативной документации на конкретную продукцию.

Капли глазные испытывают на стерильность и наличие механических включений.

Инъекционные лекарственные формы. Особого внимания требуют инъекционные лекарственные растворы, вводимые внутривенно в больших количествах. Используют такие характеристики, как внешний вид, в том числе окраска и прозрачность растворов, отсутствие механических примесей, апирогенность, стерильность, объем раствора, количество в нем действующего вещества, pH и изотоничность плазмы крови, упаковка, маркировка, объем наполнения ампул. Нормы допустимых отклонений указаны в Государственной фармакопее XI. Кроме того, определяют содержание вспомогательных веществ; для некоторых из них (фенол, крезол, сульфиты, хлорбутанол) предусмотрены допустимые количества (от 0,2 до 0,5 %). Требования к pH зависят от препарата, обычно его показатель может находиться в пределах от 3,0 до 8,0. На каждой ампуле (флаконе) указывают название лекарственного средства, его содержание (в процентах) или активность (в единицах действия, ЕД), объем или его массу, номер серии, срок годности. Проведение всех испытаний инъекционных лекарственных форм регламентировано НТД.

Анализ гомеопатических лекарственных средств весьма труден из-за высоких разведений лекарственных веществ. Если БАВ содержатся в настойках, эссенциях, мазях и других формах в разведениях до 2 С (С - сотенное) или 0,0001, то их анализ и стандартизация практически не отличаются от контроля качества лекарственных форм, используемых в аллопатической медицине. Лекарственные средства в разведении 2...3 С (10 -4 ...10 -6) анализируют после проведения специальных приемов концентрации с помощью упаривания, сжигания веществ с последующим определением одним из физико-химических методов, исходя из его разрешающей способности. При более чем 3 С разведении (10 -6) достаточно установить подлинность лекарственного средства, содержащегося в одной разовой или суточной дозе. При очень высоких разведениях (до 50 С или 10 -10 ...10 -100) контроль качества гомеопатических средств существующими методами выполнить невозможно. Для таких лекарств контроль качества осуществляют на стадии получения, строго контролируя технологический процесс. Качество контролируют при закладке ингредиентов и фиксируют в акте загрузки. Каждый ингредиент подвергают предварительному анализу. Во всех перечисленных случаях для анализа и стандартизации гомеопатических лекарственных средств используют хроматографические, фотометрические, флуоресцентные и другие методы.

Методы исследования лекарственных веществ подразделяются на:

1. физические,

2. химические,

3. физико-химические,

4. биологические.

Физические методы анализа предусматривают изучение физических свойств вещества, не прибегая к химическим реакциям. К ним относятся: определение растворимости, прозрачности или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвердевания, кипения.

Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.). Для целей идентификации лекарственных веществ используют только такие реакции, которые сопровождаются наглядным внешним эффектом, например изменением окраски раствора, выделением газов, выпадением или растворением осадков и т. п. К химическим методам исследования относятся также весовые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический анализ вошли такие химические методы исследования, как титрование в неводных средах, комплексометрия. Качественный и количественный анализ органических лекарственных веществ, как правило, проводят по характеру функциональных групп в их молекулах.

С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе - измерение электропроводности растворов и т. д.

К физико-химическим методам относятся: оптические (рефрактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро - химические (потенциометрический и полярографический методы), хроматографические методы.

Биологическое это исследование на животных (лягушках, голубей, кошек). Определяются в ЕД. Подвергаются: ЛРС, содержащие сердечные гликозиды, ЛС, содержащие гормоны, ферменты, витамины, антибиотики.

Оформление экстемпоральные ЛП, ВАЗ, ВАФ осуществляют согласно приказу МЗ РФ № 376 и методические указания о единым оформление.

Этикетки для оформления лекарств, приготовляемых индивидуально и в порядке внутриаптечной заготовки и фасовки, в зависимости от способа их применения, подразделяются на:

ü этикетки для лекарств внутреннего употребления с надписью "Внутреннее", "Внутреннее детское";

ü этикетки для лекарств наружного применения с надписью "Наружное";

ü этикетки на лекарства для парентерального введения с надписью "Для инъекций";

ü этикетки на глазные лекарства с надписью "Глазные капли", "Глазная мазь".

На всех этикетках для оформления лекарств, приготовленных индивидуально и в порядке внутриаптечной заготовки и фасовки, должны быть типографским способом отпечатаны предупредительные надписи, соответствующие каждой лекарственной форме:

ü для микстур - "хранить в прохладном и защищенном от света месте", "перед употреблением взбалтывать";

ü для мазей, глазных мазей и глазных капель - "хранить в прохладном и защищенном от света месте";

ü для капель внутреннего употребления - "хранить в защищенном от света месте";

ü для инъекций - "стерильно".

Все этикетки обязательно должны содержать предупредительную надпись "беречь от детей".

Лекарственная форма указывается от руки.

На всех этикетках для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, должны быть следующие обозначения:

ü эмблема (чаша со змеей);

ü местонахождение аптечного учреждения (предприятия);

ü наименование аптечного учреждения (предприятия);

ü способ применения (внутреннее, наружное, для инъекций) или лекарственной формы (мазь, глазные капли, капли в нос и т.д.);

ü дата приготовления...;

ü годен до...;

ü серия...;

ü "беречь от детей".

Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых индивидуально, а также способ применения должны быть напечатаны на русском или местном языке.

Текст аптечных этикеток, предназначенных для оформления лекарств, приготовляемых в порядке внутриаптечной заготовки и фасовки, а также их наименования и необходимые предупредительные надписи рекомендуется печатать типографским способом.

Предупредительные надписи, наклеиваемые на лекарства, имеют следующий текст и сигнальные цвета:

ü "перед употреблением взбалтывать" - на белом фоне зеленый шрифт;

ü "хранить в защищенном от света месте" - на синем фоне белый шрифт;

ü "хранить в прохладном месте" - на голубом фоне белый шрифт;

ü "детское" - на зеленом фоне белый шрифт;

ü "для новорожденных" - на зеленом фоне белый шрифт;

ü "обращаться с осторожностью" - на белом фоне красный шрифт;

ü "сердечное" - на оранжевом фоне белый шрифт;

ü "беречь от огня" - на красном фоне белый шрифт.

Особо ядовитые вещества (<...>, цианид и оксицианид ртути) оформляются одной предупредительной этикеткой черного цвета с обозначением белым шрифтом названия ядовитого лекарственного средства на русском (или местном) языке с изображением скрещенных костей и черепа и надписью "яд" и "обращаться осторожно" в соответствии с действующим приказом.

Оформление лекарств, приготовляемых в аптечных учреждениях (предприятиях) различных форм собственности, в соответствии с представленными Едиными правилами оформления лекарств способствует улучшению культуры лекарственного обеспечения населения, усилению контроля за сроками годности приготовленных лекарств и их ценой, привлечению к ним внимания с целью исключения возможных ошибок при их использовании.

Определение тарифов

В оплату включается:

1. Стоимость ЛС

2. Стоимость вспомогательных материалов

3. Стоимость посуды

4. Издержки

Утверждается тарифы приказом аптеки.

Исходными данными для определения издержек производства служат данные бухгалтерского учета и отчетности аптеки за истекший месяц.

Количество условных производственных единиц отражает полную трудоемкость работы по изготовлению одной единицы лекарственного средства и ИМН.

За одну производственную единицу условно принята работа, выполняемая в течении 10 мин.

За одну единицу изготовления стерильных и жидких лекарственных форм, мазей принимается лекарственное средство, полностью оформленное в соответствии с действующими документами и предназначенное для отпуска.

К стерильным лекарственным формам относятся растворы для инъекционного применения, инфузнные растворы, офтальмологические растворы для орошения, растворы и масла для новорожденных.

К ЖЛФ относятся растворы и капли для внутреннего употребления и наружного применения, масла, очищенная вода.

К мазям относятся пасты, линименты, пластыри жидкие, суспензии, эмульсии.

За одну единицу порошков и суппозиториев условно принята лекарственная форма с расфасовкой на 10 доз.


Похожая информация.


Лекция №2
по курсу «Анализ и контроль
качества лекарственных средств»
1

Краткий план лекции

1. Классификация ЛВ. Общая характеристика
фармакопейного анализа ЛВ. Реактивы, используемые в
фармакопейном анализе.
2. Физико-химические свойства лекарственных веществ
(агрегатное состояние, внешний вид, окраска, кристалличность,
полиморфизм и методы его исследования. Растворимость.
Кислотно-основные свойства лекарственных веществ).
3. Физические константы лекарственных средств и методы
их определения.
4. Методы идентификации лекарственных средств
5. Примеси в лекарственных средствах, классификация,
методы идентификации и анализа. Понятие о стрессовых
испытаниях
6. Методы количественного анализа лекарственных
средств
2

Классификация ЛВ

1. Неорганические вещества (производные s-, p- и dэлементов).
2. Органические вещества
2.1. Алифатические соединения (алканы,
галогеналканы, спирты, альдегиды, простые эфиры,
углеводы, аминокислоты, карбоновые кислоты)
2.2. Ароматические соединения (фенолы,
ароматические карбоновые кислоты, ароматические
аминокислоты, фенилалкиламины,
сульфаниламиды);
2.3. Стероидные соединения, простагландины
3

Классификация ЛВ (продолжение)

2.3. Гетероциклические соединения
2.3.1. Соединения, содержащие один гетероатом
(производные фурана, бензофурана, пиридина,
хинолина, изохинолина и др.);
2.3.2. Соединения содержащие два и более
одинаковых гетероатома (производные пиразола,
имидазола, бензимидазола, пурина, птеридина и
др.).
2.3.3. Соединения содержащие два и более разных
гетероатомов (производные тиазола, бензотиазола,
оксазолидины и др.).
2.4. Элементорганические вещества.
3. Радиофармацевтические препараты.
4. Биотехнологические (высокомолекулярные)
лекарственные вещества
4

Фармацевтический анализ (анализ ЛВ и ЛС)

Фармацевтический анализ – это раздел науки о
химической характеристике и измерении БАВ на всех
этапах производства – от контроля сырья до оценки
качества полученного ЛВ, изучения его стабильности
(установления сроков годности) и стандартизации ЛФ и
ЛС.
Особенности:
1. Проводится анализ совершенно различных по
природе, структуре и свойствам веществ
2. Измеряемые концентрации (содержания) находятся в
диапазоне от 10-9 (1 ppb) до 100%.
3. Анализируются не только индивидуальные ЛВ, но и их
5
смеси.

Фармацевтический анализ (классификации)

В зависимости от поставленных задач:
1. Фармакопейный анализ
2. Постадийный контроль производства ЛВ и ЛС
3. Анализ индивидуальных ЛС
4. Аптечный экспресс-анализ
5. Биофармацевтический анализ
В зависимости от результата:
1. Качественный
2. Количественный
3. Полуколичественный (предельные испытания)
6

Критерии фармацевтического анализа

1. Избирательность (специфичность, селективность) –
способность однозначно оценивать определяемый
компонент выбранным методом независимо от других
присутствующих веществ (примесей, продуктов распада и
др.) в испытуемом образце в пределах заданного
диапазона применения.
2. Чувствительность
2.1. Предел обнаружения
2.2. Предел определения
3. Правильность – отражение разницы между истинным
содержанием определяемого компонента и
экспериментальным результатом анализа.
4. Воспроизводимость (прецизионность) –
характеристика «рассеивания» результатов возле
среднего значения определяемой величины.
5. Робастность – характеристика устойчивость методики
во времени.
Эти критерии устанавливаются в процессе валидации 7
методов (методик)

Фармакопейный анализ ЛВ (общая структура)

агрегатное состояние,
внешний вид,
окраска, кристалличность,
полиморфизм
Подлинность
Первая идентификация
(специфичный метод)
Вторая идентификация
(потверждение)
Определение
физических
констант,
ф/х свойств
Фармакопейный
анализ ЛВ
(общая структура)
температура плавления, температура
затвердевания, температура каплепадения,
температурные пределы перегонки
температура кипения,
плотность и вязкость жидкостей, удельное
вращение и показатель преломления
растворимость, pH
Определение
примесей
Количественное
определение
Показатели микробной чистоты,
стерильность, апирогенность, отсутствие вирусных тел
8

Химическое название

Используется номенклатура IUPAC
(International Union Pure Applied Chemistry) – Международный союз
чистой и прикладной химии)
(гораздо реже – тривиальные названия)
1) определяют тип номенклатуры (заместительная, радикальнофункциональная);
2) определяют тип характеристической группы, которую следует принять
за главную;
3) определяют родоначальную структуру (главную цепь, старшую
циклическую систему);
4) дают название исходной структуре и основным группам;
5) дают название префиксам;
6) проводят нумерацию;
7) объединяют частичные названия в общее полное название,
придерживаясь алфавитного порядка для всех определяемых префиксов.
Помимо названия указывают структурную химическую формулу
и брутто-формулу.
9

10. Пример оформления

2-(нафтален-1-илметил)-4,5-дигидро-1Н-имидазола
гидрохлорид
10

11. Пример построения химического названия органического ЛВ

Выбор нумерации: от атома азота,
ближайшего к старшему заместителю
(С=О-группе).
Установление родоначальной
структуры: 1,4-бензодиазепин;
Название с учетом заместителей: 2,3дигидро-2Н-1,4-бензодиазепин-2-он;
Перечисление заместителей: по
алфавиту – 7-Cl-1-Me-5-Ph
Итого:
7-хлор-1-метил-5-фенил-2,3дигидро-2Н-1,4-бензодиазепин-2-он
H3C
O
N
Cl
N
11

12. Пример построения химического названия органического ЛВ (2)

2-метил-3-гидрокси4,5-ди
(гидроксиметил)пиридин
HO
OH
4
3
5
2
HO
6
N
1
12

13. Описание ЛВ

1. Агрегатное состояние (жидкость, газ, твердое
вещество, кристалличность), цвет, запах, особые
свойства (гигроскопичность, легкая окисляемость на
воздухе и др.), размер частиц (для тв. веществ).
2. Полиморфизм – явление, характерное для
твердых веществ – способность вещества в твердом
состоянии существовать в различных
кристаллических формах при одном и том же
химическом составе.
При описании сольватов (гидратов) используется
термин «псевдополиморфизм» (изменчивость
состава сольвата или гидрата).
13

14. Описание ЛВ - полиморфизм

Полиморфные формы проявляют
одинаковые химические свойства
в растворах и расплавах, но в
твердом состоянии их физические
(плотность, Т плавл, сжимаемость)
и физико-химические свойства
(растворимость и как следствие
биодоступность) могут
существенно различаться.
Та из полиморфных форм,
которая имеет меньшее значение
свободной энтальпии, является
наиболее термодинамически
стабильной, а остальные формы
могут находиться в т.н.
«метастабильном» состоянии. 14

15. Полиморфизм (примеры)

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен);
е) графен; ж) однослойная нанотрубка
15

16. Полиморфизм (примеры)

Нимесулид (на формуле показаны торсионные вращения и
упаковка, соответствующая полиморфной форме I)
16

17. Полиморфизм (примеры)

Нимесулид (на формуле показаны суммарные торсионные
вращения и упаковка, соответствующая полиморфной форме II)
17

18. Полиморфизм (примеры)

Данные
рентгеновской
дифракции для
форм I и II
нимесулида
18

19. Полиморфизм (примеры)

Дифференциальная сканирующая калориметрия
(DSC) полиморфных форм нимесулида
19

20. Полиморфизм и биодоступность

Кинетика растворения двух полиморфных
форм нимесулида (37С, рН 7,5)
20

21. Методы исследования полиморфных форм

1. Рентгеновская дифракция (порошок и
кристаллы)
2. Дифференциальная сканирующая
калориметрия, микрокалориметрия
3. Термогравиметрия
4. Анализ поглощения влаги
5. ИК-Фурье-спектроскопия
6. Рамановская спектроскопия
7. Изучение растворимости (кинетики
растворения)
21

22. Размер частиц (порошки, пеллеты)

Для определения размера
частиц использую наборы
сит с квадратными
отверстиями,
изготовленные из инертных
материалов. Степень
измельчения указывается с
использованием номера
сита (размер стороны
отверстия в мкм).
Современные методы – методы
лазерного сканирования
22

23. Растворимость

Данные о растворимости вещества означают
приблизительную растворимость при температуре
20°С, если нет других указаний. Выражение
«растворим в стольких-то частях» следует понимать
как указание на число миллилитров растворителя
(представленное указанным числом частей), в
которых растворим 1 г твердого вещества.
Иногда для обозначения растворимости вещества
используются описательные термины (легко, плохо,
трудно и т.д.).
Классическое описание растворимости (справочники)
– 1 г вещества растворяется в Х г растворителя при
температуре Т.
23

24. Растворимость

24

25. Кислотно-основные свойства

Не приводятся в нормативных документах по
контролю качества ЛВ, но имеют решающее
значение при проведении испытаний,
растворимости в водных средах, выборе
методик и методов анализа, а также
всасыванию, распределению,
биодоступности ЛВ.
По кислотно-основным свойствам все
вещества делятся на неионогенные (не
кислота/не основание) и ионогенные –
кислоты (проявляющие в основном
кислотные свойства), основания, амфолиты.
25

26. Методы определения физических констант

1. Гравиметрия
2. Рефрактометрия
3. Поляриметрия
4. Вискозиметрия (капиллярная,
ротационная)
5. Термометрия
26

27. Относительная плотность (d20)

Относительная плотность d представляет собой отношение
массы определенного объема вещества к массе равного его
объема воды при температуре 20оС.
Относительную плотность d определяют с помощью
пикнометра, плотномера, гигростатических весов или ареометра
с точностью до десятичных знаков, обозначенных в частной
статье. Атмосферное давление при взвешивании не учитывают,
так как связанная с ним ошибка не превышает единицы в
третьем десятичном знаке.
Кроме того, обычно используют два других определения.
Относительная плотность вещества представляет собой
отношение массы определенного объема вещества при
температуре 20оС к массе равному ему объема воды при
температуре 4оС.
Плотность ρ20 - это отношение массы вещества к его объему
при температуре 20оС. Плотность выражают в килограммах на
кубический метр (1 кг/м3 = 10 –3 г/см3). Чаще всего измерение
плотности выражается в граммах на кубический сантиметр
27
(г/см3).

28. Относительная плотность

28

29.

29

30. Показатель преломления

30

31. Рефрактометры

31

32.

32

33. Оптическое вращение

33

34. Оптическое вращение

34

35.

35

36. Поляриметрия (оборудование)

36

37. Вязкость

Вязкость (внутреннее трение) – свойство текучих тел оказывать
сопротивление передвижению одной их части относительно
другой.
Текучие тела могут иметь ньютоновский тип течения.
Ньютоновскими жидкостями называют системы, вязкость которых
не зависит от напряжения сдвига и является постоянной
величиной в соответствии с законом Ньютона.
Для ньютоновских жидкостей различают динамическую,
кинематическую, относительную, удельную, приведенную и
характеристическую вязкости. Для неньютоновских жидкостей
характерна, главным образом, структурная вязкость.
Динамическая вязкость или коэффициент вязкости η – это
тангенциальная сила, приходящаяся на единицу поверхности,
которая также называется напряжением сдвига t , выраженная в
паскалях (Па), которую необходимо приложить для того, чтобы
переместить слой жидкости площадью 1 м2 со скоростью (v) 1
метр в секунду (м.с-1), находящийся на расстоянии (х) 1 метр
относительно другого слоя, параллельно площади скольжения.
37

38. Вязкость (капиллярный метод)

Методика. Испытуемую жидкость,
имеющую температуру 20оС, если в
частной статье не обозначена другая
температура, заливают в вискозиметр
через трубку (L) в таком количестве, чтобы
заполнить расширение (А), но при этом
уровень жидкости в расширении (В) должен
остаться ниже выхода к вентиляционной
трубке (М). Вискозиметр в вертикальном
положении погружают в водяную баню при
температуре (20+/-0,1)оС, если в частной
статье не указана другая температура,
удерживая его в этом положении не менее
30 минут для установления температурного
равновесия. Трубку (М) закрывают и
повышают уровень жидкости в трубке (N)
таким образом, чтобы она находилась
примерно на 8 мм выше метки (Е).
Удерживают жидкость на этом уровне,
закрыв трубку (N) и открыв трубку (М).
Затем открывают трубку (N) и измеряют
время, за которое уровень жидкости
снизится от метки (Е) до метки (F),
секундомером с точностью до одной пятой
секунды.
38

39. Температурные пределы перегонки

39

40. Температура плавления

1. Капиллярный метод определения температуры
плавления. Температура плавления, определенная
капиллярным методом, представляет собой температуру, при
которой последняя твердая частичка уплотненного столбика
вещества в капиллярной трубке переходит в жидкую фазу.
2. Открытый капиллярный метод - применяют для
веществ, имеющих аморфную структуру, не растирающихся в
порошок и плавящихся ниже температуры кипения воды,
таких как жиры, воск, парафин, вазелин, смолы.
3. Метод мгновенного плавления - применяют для твердых
веществ, легко превращаемых в порошок.
4. Температура каплепадения - температура, при которой в
условиях, приведенных ниже, первая капля расплавленного
испытуемого вещества падает из чашечки (жиры, воски,
масла).
5. Температура затвердевания – максимальная температура,
при которой происходит затвердевание переохлажденной жидкости.
40

41. Определение температуры плавления (инструментальное)

Видео процесса плавления
Цветное видео высокого разрешения позволяет изучать
вещества, которые плавятся с разложением или имеют
окраску. С помощью приборов можно также изучать явления
41
термохромизма.

42. Подлинность (методы)

1. Химические реакции подлинности:
А. Общие реакции на подлинность по
функциональным группам (первичные
ароматические амины, алкалоиды,
сложные эфиры и др.)
Б. Специфичные реакции на ионы
В. Специфичные реакции на
органические вещества
42

43. Примеры реакций идентификации по функциональным группам

Реакция на первичную ароматическую аминогруппу:
43

44. Примеры реакций идентификации по функциональным группам

Реакция на первичную аминогруппу
(нингидриновая реакция):
44

45. Специфические реакции на ионы

45

46. Специфические реакции на ионы

46

47. Специфические реакции на ионы

Специфические реакции на ионы
подразделяются:
1. Реакции осаждения
2. ОВ реакции
3. Реакции разложения
4. Реакции комплексообразования
47

48. Специфические реакции подлинности

48

49.

49

50.

50

51.

51

52.

52

53.

53

54.

54

55.

55

56.

56

57. Подлинность (методы)

2. Инструментальные методы
2.1. ИК-спектроскопия (ИК-Фурье)
2.2. Абсорционная спектрофотометрия
в УФ и/или видимой области спектра
2.3. Хроматографические методы (ТСХ,
ГХ, ЖХ)
2.4. Электрофорез, капиллярный
электрофорез (включая пептидное
картирование)
57

58. Подлинность (методы)

3. Физические методы (определение
физических констант):
3.1. Температура плавления, кипения,
температурные пределы перегонки.
3.2. Относительная плотность.
3.3. Показатель преломления.
3.4. Угол оптического вращения.
3.5. Определение вязкости.
58

59. Подлинность (доказательство)

Установление подлинности ЛВ проводится
как минимум 2 методами!
Первая идентификация – специфичный
инструментальный метод (как правило ИКспектрометрия) + дополнительныйметод
(например, хроматографический или
химический метод)
Вторая идентификация – подтверждение
подлинности (используются определение
физических констант, дополнительных
химических методов, абсорбционная
спектрофотометрия и др.).
59

60. Примеси (классификация)

1. Общие технологические примеси – попадающие в процессе
производства.
1.1. Реагентные примеси (SO42-,Cl-, сульфатная зола и др.)
1.2. Примеси от контакта с технологическим оборудованием (HM,
As, Pb, Cd, Fe и др.)
1.3. Остаточные органические растворители
1.4. Вода, влага
2. Специфические примеси – характерны для конкретного ЛВ и
включают:
2.1. Полупродукты синтеза и специфические реагенты
2.2. Побочные продукты синтеза
2.3. Сопутствующие примеси (химически родственные аналоги и
остаточные кол-ва пестицидов и супертоксикантов – для ЛВ
природного происхождения)
2.4. Стереоизомеры-примеси (примеси энантиомеров)
2.5. Продукты разложения и взаимодействия с технологическими
примесями, влагой, кислородом воздуха, органическими
растворителями и др.
3. Механические примеси
60

61. Примеси

1. Летучие (характеризуются потерей в массе при
высушивании).
2. Неорганические (устанавливаются при определении
сульфатной золы, тяжелых металлов и т.д.).
3. Родственные по структуре примеси (определяются
хроматографическими методами или электрофорезом).
Отдельно классифицируют токсичные
(оказывают влияние на фармакологический
эффект – т.е. являются недопустимыми) и
нетоксичные (указывают на степень очистки
ЛВ) примеси.
61

62. Потеря в массе при высушивании (метод гравиметрии)

Является суммарным неспецифичным показателем,
характеризующим наличие воды (влаги), остаточных 62
органических растворителей в ЛВ

63. Определение воды

1. Дистилляция (отгонка) – для жидкостей
2. Титриметрический метод (метод К.
Фишера, микрометод) – для твердых веществ
63

64. Физические и химические свойства, характеризующие чистоту

Прозрачность и степень мутности. Прозрачные растворы –
при освещении их электролампой на черном фоне не
наблюдается присутствие нерастворенных частиц. Степень
мутности устанавливают путем сравнения испытуемого
вещества с эталоном (или с растворителем).
Окраску жидкостей устанавливают путем сравнения
испытуемых растворов с равным объем одного из эталонов при
дневном освещении на матово-белом фоне.
Адсорбционная способность – устанавливается по
обесцвечиванию красителя (метиленовый синий) в растворе ЛВ
определенной концентрации.
Примеси окрашенных веществ (светопоглощающие примеси)
– для неокрашенных веществ определяется абсорбция
раствора ЛВ в воде или органическом растворителе в видимой
области спектра.
64

65. Определение золы

Метод гравиметрии
1. Общая зола (ЛРС, ряд органических
ЛВ) – сжигание навески (1.0000 г)
испытуемого образца в тигле при Т
около 500оС (30 мин), после
охлаждения определяют массу остатка.
2. Сульфатная зола - навеску
смачивают 1 мл Н2SO4 и далее
поступают как при определении общей
золы.
65

66. Определение «тяжелых» металлов

А. Стадия пробоподготовки:
1. Растворение в воде (для ЛВ, хорошо растворимых в воде) или
в смеси с органическими растворителями (ацетон, диоксан);
2. «Мокрая» минерализация (для органических веществ) –
2.1. сжигание ЛВ со смесью MgSO4 и H2SO4 (Т=800оС).
2.2. минерализация смесью H2SO4 и HNO3 (нагревание до
200оC).
2.3. минерализация с использованием СВЧ-нагревания
(тефлоновые сосуды, 2,5 ГГц).
3. «Сухая» минерализация – сплавление с MgO (Т=600оС).
Б. Качественный и/или полуколичественный анализ
(химическая реакция с сульфид-ионом):
1. Качественный – безэталонный (отсутствие окраски с
реагентом)
2. Полуколичественный анализ – сравнение окраски с эталоном,
содержащим предельное количество ионов свинца (эталона).
66
В. Количественный анализ – метод ААС или АЭС.

67. Остаточные органические растворители (классификация)

В основе классификации лежит потенциальная
опасность растворителей для организма человека и
окружающей среды.
Класс 1. Растворители, использования которых
следует избегать (канцерогенные вещества и
супертоксиканты окружающей среды – бензол, ТХУ,
1,2-дихлорэтан, 1,1-дихлорэтен, 1,1,1-трихлорэтан).
Класс 2. Растворители, использование которых
следует ограничивать (негенотоксичные
канцерогены, вещества с существенной
токсичностью) – ацетонитрил, гексан, диоксан,
ксилол, метанол, нитрометан, пиридин, хлороформ,
толуол, этилеггликоль и др.
67

68. Остаточные органические растворители (классификация, продолжение)

Класс 3. Малотоксичные растворители (с
низким потенциалом токсичности у человека,
не требуют установления предельных
содержаний – менее 5000 ppm (мкг/г) или
0,5%) – ацетон, бутанол-1, бутанол-2, гептан,
ДМСО, пентан, уксусная кислота, пропанол-1,
пропанол-2, этанол, ТГФ, пентан и др.
Класс 4. Растворители, для которых
отсутствуют необходимые данные о
токсичности (изооктан, петролейный эфир,
трифторуксусная кислота и др.).
68

69. Остаточные органические растворители

Метод газовой хроматографии (ГХскрининг)
А. Подготовка образца и раствора
сравнения
1. Растворение навески испытуемого образца
в воде (для ЛВ, растворимых в воде).
2. Растворение навески испытуемого образца
в диметилформамиде (ДМФА).
3. Растворение навески испытуемого образца
в 1,3-диметил-2-имидазолидиноне.
Поскольку большинство органических растворителей
«включены» в кристаллическую решетку (или в
структуру в виде сольватов) ЛВ, пробоподготовка
должна включать полное растворение образца с
«разрушением» решетки и возможных сольватов.
CH3
H
N
CH3
O
CH3
N
O
N
CH3
69

70. Остаточные органические растворители (анализ)

Б. Парофазовая пробоподготовка –
проводится для перевода ООР из раствора в
парогазовую фазу (нагревание в герметично
укупоренном сосуде).
В. Газохроматографический анализ парогазовой фазы (полуколичественный анализ с
разделением на капиллярной колонке средней
полярности).
70

71. Специфические примеси

1. Полупродукты синтеза и специфические реагенты
(включая катализаторы)
1.1. Неорганические вещества – катионы, анионы,
комплексные соединения
1.2. Органические вещества
1.3. Генетически-модифицированные микроорганизмы,
вирусы и др.
O
N
N
HN
N
N
N
CH3
Ирбесартан (примесь азид-иона)
71

72. Специфические примеси

Наибольшая группа примесей в органических ЛВ –
родственные по химической структуре химические
вещества (число их ограничено пока только
возможностями методов разделения и детекции). Чем
сложнее хим. структура – тем большее количество
примесей необходимо нормировать.
O
H3C
H3C
CH3
O
H
H
CH3
H
O
H
H3C
O
O
CH3
O
H
H
S
O
H
O
S
H
H
Br
O
H
CH3
O
CH3
H
O
S
H
O
O
H3C
CH3
CH3
Спиронолактон
H3C
O
H
H
O
CH3
H3C
O
CH3
H
H
H
O
O
H
H
H
H
O
72
O

73. Специфические примеси

OH
OH
O
Парацетамол
O2N
H3C
N
H
OH
HO
H2N
O
Побочные
продукты
синтеза
Cl
H3C
O
N
H
OH
O
H3C
H3C
N
H
Промежуточные
продукты
синтеза
N
H
Cl
OH
O
H3C
N
H
73

74. Специфические примеси

Сопутствующие примеси в ЛВ природного
происхождения:
А. химически родственные аналоги
(обладают биологической (фармакологической)
активностью, могут быть потенциально опасны
для организма)
Б. остаточные кол-ва пестицидов и
супертоксикантов (полихлордиоксины,
полихлорбифенилы), продукты
жизнедеятельности микроорганизмов
(афлатоксины) – безусловные токсические
вещества, жестко нормируемые на уровне ppm и
ppb (мкг/г или нг/г)
74

75. Сопутствующие примеси в ЛВ природного происхождения (пример)

OH
O
OH
OH
O
H
H
H
HO
H
OH
H
OH
cholic acid
H
HO
O
H
OH
ursodeoxycholic acid
H
Урсодезоксихолевая кислота
(выделяется из медвежьей желчи)
H
H
OH
OH
chenodeoxycholic acid
75

76. Специфические примеси

Продукты разложения и взаимодействия:
1. с технологическими примесями (тяжелыми металлами
(d-элементы являются катализаторами многих ОВреакций, в том числе с участием O2), ионами железа,
остатками реагентов с реакционоспособными
функциональными группами),
2. с влагой (возможны реакции гидролиза (сложные
эфиры, амиды, карбаматы и др.), поглощение влаги
всегда связано с уменьшением содержания активного
вещества),
3. с кислородом воздуха (кислородочувстивительные
вещества, например, полиненасыщенные жирные
кислоты, сильные восстановители),
4. с остаточными органическими растворителями (ряд
органических растворителей – этиленоксид, дихлорметан,
дихлорэтан, уксусная кислота и др. – достаточно
реакционоспособны и реагируют с ЛВ при хранении).
76

77. Стрессовые испытания -

Стрессовые испытания Испытания устойчивости ЛВ под
воздействием ряда факторов
(температура, реагенты, освещение) с
целью доказательства селективности
методов оценки примесей, изучения
образования и идентификации
примесей, дополнительного изучения
стабильности ЛВ при хранении.
77

78. Стрессовые испытания (условия)

1. Температура – последовательное
повышение температуры при хранении
образца ЛВ на 10оС (50, 60 и т.д.);
2. Влажность (повышение отн. влажности
воздуха при хранении образца ЛВ до 75% и
выше).
3. Реагенты – растворы кислот (1М HCl),
щелочей (1М или 0,1М NaOH), H2O2 (3-30%)
при нагревании.
4. Воздействие света (УФ-свет,
интенсивность - не менее 200 Вт.ч/м2)
78

79. Количественное определение

Методы анализа (классификация,
краткая характеристика, применение
для анализа ЛВ и ЛС, сравнительная
оценка) – это тема следующих как
минимум 3 лекций!
Благодарю за внимание!

В современном фармацевтическом анализе стали широко применяться неводные растворители. Если раньше основным растворителем в анализе была вода, то теперь одновременно применяют и разнообразные неводные растворители (ледяную или безводную уксусную кислоту, уксусный ангидрид, диметил-формамид, диоксан и др.), позволяющие изменять силу основ-ности и кислотности анализируемых веществ. Получил разви-тие микрометод, в частности капельный метод анализа, удобный для использования во внутриаптечном контроле качества ле-карств.

Широкое развитие в последние годы получают такие методы исследования, при которых используют сочетание различных ме-тодов при анализе лекарственных веществ. Например, хромато-масс-спектрометрия - это сочетание хроматографии и масс-спектрометрии. В современный фармацевтический анализ все больше проникает физика, квантовая химия, математика.

Анализ любого лекарственного вещества или сырья необхо-димо начинать с внешнего осмотра, обращая при этом внима-ние на цвет, запах, форму кристаллов, тару, упаковку, цвет стекла. После внешнего осмотра объекта анализа берут сред-нюю пробу для анализа согласно требованиям ГФ X (с. 853).

Методы исследования лекарственных веществ подразделя-ются на физические, химические, физико-химические, биологи-ческие.

Физические методы анализа предусматривают изучение фи-зических свойств вещества, не прибегая к химическим реакци-ям. К ним относятся: определение растворимости, прозрачности

  • или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвер-девания, кипения. Соответствующие методики описаны в ГФ X .(с. 756-776).

Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.).

Для целей идентификации лекарственных веществ исполь-зуют только такие реакции, которые сопровождаются нагляд-ным внешним эффектом, например изменением окраски раство-ра, выделением газов, выпадением или растворением осадков и т. п.

К химическим методам исследования относятся также весо-вые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический ана-лиз вошли такие химические методы исследования, как титро-вание в неводных средах, комплексометрия.

Качественный и количественный анализ органических лекар-ственных веществ, как правило, проводят по характеру функ-циональных групп в их молекулах.

С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсив-ность окраски в зависимости от концентрации вещества, в кон-дуктометрическом анализе - измерение электропроводности растворов и т. д.

К физико-химическим методам относятся: оптические (реф-рактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро-химические (потенциометрический и полярографический мето-ды), хроматографические методы.

Широкое внедрение принципов медицины, основанной на доказательствах, в клиническую практику во многом обусловлено экономическим аспектом. От того, насколько убедительны научные данные о клинической и экономической эффективности методов диагностики, лечения и профилактики, зависит правильность распределения финансовых средств. В клинической практике конкретные решения следует принимать не столько на основании личного опыта или мнения экспертов, сколько исходя из строго доказанных научных данных. Следует обратить внимание не только на бесполезность, но и на отсутствие научно-обоснованных доказательств пользы применения различных методов лечения и профилактики. В настоящее время это положение приобретает особую актуальность, так как клинические исследования финансируются преимущественно производителями медицинских товаров и услуг.

Понятие «evidence-based medicine», или «медицина, основанная на доказательствах», было предложено канадскими учеными из университета Мак Мастера в Торонто в 1990 году. Доказательная медицина- это не новая наука, а скорее новый подход, направление или технология сбора, анализа, обобщения и интерпретации научной информации. Необходимость в медицине, основанной на доказательствах, возникла, прежде всего, в связи с увеличением объема научной информации, в частности в области клинической фармакологии. Ежегодно в клиническую практику внедряются все новые и новые лекарственные средства. Они активно изучаются в многочисленных клинических исследованиях, результаты которых нередко оказываются неоднозначными, а иногда и прямо противоположными. Чтобы использовать полученную информацию, ее необходимо не только тщательно проанализировать, но и обобщить.

Для рационального применения новых лекарственных средств, достижения их максимального терапевтического действия и предупреждения их нежелательных реакций необходимо уже на стадии испытаний получить всестороннюю характеристику препарата, данные обо всех его лечебных и возможных отрицательных свойствах. Одним из основных путей получения новых лекарственных средств является скрининг биологически активных веществ. Следует отметить, что такой путь поиска и создания новых препаратов очень трудоемок - в среднем один заслуживающий внимания препарат приходится на 5-10 тысяч исследованных соединений. Путем скрининга и случайных наблюдений в свое время были найдены ценные препараты, вошедшие в медицинскую практику. Однако случайность не может быть основным принципом отбора новых лекарственных средств. По мере развития науки стало совершенно очевидным, что создание лекарственных препаратов должно базироваться на выявлении биологически активных веществ, участвующих в процессах жизнедеятельности, изучении патофизиологических и патохимических процессов, лежащих в основе развития различных заболеваний, а также углубленном исследовании механизмов фармакологического действия. Достижения медико-биологических наук позволяют все шире проводить направленный синтез веществ с улучшенными свойствами и определенной фармакологической активностью.

Доклиническое изучение биологической активности веществ принято разделять на фармакологическое и токсикологическое. Такое разделение условно, поскольку указанные исследования взаимозависимы и строятся на одних и тех же принципах. Результаты изучения острой токсичности лекарственных соединений дают информацию для последующих фармакологических исследований, которые, в свою очередь, определяют интенсивность и продолжительность изучения хронической токсичности вещества.

Цель фармакологических исследований – определение терапевтической активности препарата, а также его влияния на основные анатомические и физиологические системы организма. В процессе изучения фармакодинамики вещества устанавливают не только его специфическую активность, но и возможные побочные реакции, связанные с фармакологическим эффектом. Действие исследуемого препарата на больной и здоровый организмы может различаться, поэтому фармакологические испытания должны проводиться на моделях соответствующих заболеваний или патологических состояний.

При токсикологических исследованиях устанавливают характер и выраженность возможного повреждающего действия препаратов на экспериментальных животных. В токсикологических исследованиях выделяют три этапа:

    изучение острой токсичности вещества при однократном введении;

    определение хронической токсичности соединения, которое включает в себя повторное применение препарата на протяжении 1 года, а иногда и более;

    установление специфической токсичности препарата – онкогенности, мутагенности, эмбриотоксичности, включая тератогенное действие, сенсибилизирующих свойств, а также способности вызывать лекарственную зависимость.

Изучение повреждающего действия исследуемого препарата на организм экспериментальных животных позволяет определить, какие органы и ткани наиболее чувствительны к данному веществу и на что следует обратить особое внимание при клинических исследованиях.

Цель клинических исследований - оценка терапевтической или профилактической эффективности и переносимости нового фармакологического средства, установление наиболее рациональных доз и схем его применения, а также сравнительная характеристика с уже существующими лекарственными средствами. При оценке результатов клинических исследований следует учитывать следующие их характеристики: наличие контрольной группы, ясные критерии включения и исключения пациентов, включение пациентов в исследования до выбора лечения, случайный (слепой) выбор лечения, адекватный метод рандомизации, слепой контроль, слепая оценка результатов лечения, информация об осложнениях и побочных эффектах, информация о качестве жизни пациентов, информация о числе больных выбывших из исследования, адекватный статистический анализ с указанием названий использованных текстов и программ, статистическая сила, информация о размере выявленного эффекта.

Программы клинических исследований разных групп препаратов могут значительно различаться. Однако некоторые значительные положения должны быть всегда отражены. Четко следует сформулировать цели и задачи испытания; определить критерии отбора больных; указать метод распределения больных на основную и контрольную группы и число больных в каждой группе; метод установления эффективных доз препарата, длительность исследования; метод контроля (открытый, слепой, двойной и др.), препарат сравнения и плацебо, методы количественного анализа действия исследуемых препаратов (подлежащие регистрации показатели); методы статической обработки данных.

При оценке публикаций, посвященных методам лечения, следует помнить, что критерии исключения больных из исследования указываются достаточно часто, а критерии включения – реже. Если не ясно, на каких пациентах изучался препарат, то трудно оценить информативность полученных данных. Большая часть исследований проводиться в специализированных университетских больницах или научных центрах, где больные, конечно же, отличаются от больных в районных поликлиниках. Поэтому после первичных испытаний проводят все новые и новые исследования. Сначала – многоцентровые, когда благодаря привлечению разных больниц и амбулаторной особенности каждой из них сглаживаются. Затем – открытые. С каждым этапом уверенность в том, что результаты исследований будут применимы для любого стационара, увеличиваются.

Весьма важным и сложным является вопрос об установлении дозы и режима применения исследуемого препарата. Существуют только самые общие рекомендации, в основном сводящиеся к тому, что следует начинать с низкой дозы, которую постепенно увеличивают, пока не будет получен желаемый или побочный эффект. При разработке рациональных доз и схем применения исследуемого препарата, желательно установить широту его терапевтического действия, диапазон между минимальной и максимальной безопасной терапевтическими дозами. Длительность применения исследуемого препарата не должна превышать длительность токсикологических испытаний на животных.

В процессе клинических исследований новых лекарственных средств выделяют 4 взаимосвязанные фазы (этапы).

Фазу первых клинических испытаний называют “пристрелочной”, или “клинико-фармакологической”. Цель ее - установить переносимость исследуемого препарата и наличие у него терапевтического действия.

В фазу II клинические исследования проводят на 100-200 больных. Необходимое условие – наличие контрольной группы, существенно не отличающейся по составу и численности от основной группы. Больные опытной группы (основной) и контрольной, должны быть одинаковыми по полу, возрасту, исходному фоновому лечению (его желательно прекратить за 2-4 недели до начала исследования). Группы формируются случайным образом путем использования таблиц случайных чисел, в которых каждая цифра или каждая комбинация цифр имеет равную вероятность отбора. Рандомизация, или случайное распределение, - основной способ обеспечения сопоставимости групп сравнения.

В клинических исследованиях новые препараты стараются сравнивать с плацебо, что позволяет оценить реальную эффективность терапии, например, ее влияние на продолжительность жизни больных по сравнению с отсутствием лечения. Необходимость двойного слепого метода определяется тем, что если врачи знают, какое лечение получает больной (активный препарат или плацебо), то они могут непроизвольно выдать желаемое за действительное.

Необходимым условием проведения адекватных клинических исследований является рандомизация. Из рассмотрения нужно сразу исключать статьи об исследованиях, в которых распределение пациентов на группы сравнения было не неслучайным, или метод распределения был неудовлетворительным (например, делили пациентов по дням недели поступления в стационар) или вообще отсутствует информация о нем. Еще менее информативными являются исследования с историческим контролем (когда для сравнения используются полученные ранее данные или результаты исследований, проводившихся в других лечебных учреждениях). В международной литературе о рандомизации сообщается в 9/10 статей, посвященным проблемам фармакотерапии, но только в 1/3 статей уточняется метод рандомизации. Если качество рандомизации вызывает сомнение, то опытная и контрольная группы, вероятнее всего, не сравнимы, и необходимо искать другие источники информации.

Большое значение имеет клиническая значимость и статистическая достоверность результатов лечения. Результаты клинического испытания или популяционного исследования представляются в виде сведений о частоте исходов и статистической достоверности различий между группами пациентов. Не представляет ли автор статистически достоверные, но малые различия как клинически значимые? Статистически значимо то, что действительно существует с высокой вероятностью. Клинически значимо то, что своими размерами (например, величиной снижения смертности) убеждает врача в необходимости изменить свою практику в пользу нового метода лечения.

Методы, критерии оценки эффективности препарата, время измерения соответствующих показателей должны быть согласованы перед началом испытания. Критерии оценки бывают клиническими, лабораторными, морфологическими и инструментальными. Нередко об эффективности исследуемого препарата судят по уменьшению дозы других лекарственных средств. Для каждой группы препаратов существуют обязательные и дополнительные (факультативные) критерии.

Целью фазы III клинических испытаний является получение дополнительных сведений об эффективности и побочном действии фармакологического средства, уточняются особенности действия препарата и определяются относительно редко встречающиеся нежелательные реакции. Изучаются особенности препарата у больных с нарушением кровообращения, функции почек и печени, оценивается взаимодействие с другими средствами. Результаты лечения заносятся в индивидуальные регистрационные карты. В конце исследования полученные результаты суммируются, обрабатываются статистически и оформляются в виде отчета. Соответствующие показатели, полученные за один и тот же период времени в основной и контрольной группах, сопоставляются статически. Для каждого показателя вычисляется средняя разность за изучаемый промежуток времени (по сравнению с исходным уровнем до лечения) и оценивается достоверность отмечено динамики внутри каждой группы. Затем сравниваются средние разности величин конкретных показателей контрольной и опытной групп, для оценки различия в действии исследуемого средства и плацебо или препарата сравнения. Отчет о результатах клинических испытаний нового лекарственного средства оформляется в соответствии с требованиями Фармакологического комитета и представляется в комитет с конкретными рекомендациями. Рекомендация к клиническому применению считается обоснованной, если новый препарат:

    Более эффективен, чем известные препараты аналогичного действия;

    Обладает лучшей переносимостью, чем известные препараты (при одинаковой переносимости);

    Эффективен в тех случаях, когда лечение известными препаратами безуспешно;

    Более выгоден экономически, имеет простую методику лечения или более удобную лекарственную форму;

    При комбинированной терапии повышает эффективность уже существующих лекарственных средств, не увеличивая их токсичности.

После разрешения применения нового препарата в ветеринарной практике и его внедрения начинается фаза IV исследований – действие лекарственного средства изучается в разнообразных ситуациях на практике.