1. Товарные и определяющие технологию свойства серной кислоты.

Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО 3 · т Н 2 О.

При п = т = 1 это моногидрат серной кислоты (100 % -ная серная кислота), при т > п – водные растворы моногидрата, при т < п – растворы оксида серы (VI) в моногидрате (олеум).

Моногидрат серной кислоты – бесцветная маслянистая жидкость с температурой кристаллизации 10,37 о С, температурой кипения 296,2 о С и плотностью 1,85 т/м 3 . С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н 2 SО 4 · Н 2 О, Н 2 SО 4 · 2Н 2 О, Н 2 SО 4 · 4Н 2 О и соединения с оксидом серы Н 2 SО 4 · SО 3 и Н 2 SО 4 ·2SО 3 .

Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.

Температура кипения серной кислоты также зависит от ее концентрации, то есть состава системы «оксид серы (VI) – вода». С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5 о С при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 о С (температура кипения моногидрата) до 44,7 о С, отвечающей температуре кипения 100 %-ного оксида серы (VI).

При нагревании паров серной кислоты выше 400 о С она подвергается термической диссоциации по схеме:

400 о С 700 о С

2 Н 2 SО 4 <=> 2Н 2 О + 2SО 3 <=> 2Н 2 О + 2SО 2 + О 2 .

Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.

Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон (от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности. На рис. 1 представлено применение серной кислоты и олеума в народном хозяйстве.


Рис. 1. Применение серной кислоты.


2. Сырьевые источники получения серной кислоты.

Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV).

Природные залежи самородной серы невелики, хотя кларк ее равен 0,1 %. Чаще всего сера находится в природе в форме сульфидов металлов и сульфатов метало, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов.

Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV).

При этом доля колчедана в балансе сырья уменьшается, а доля серы возрастает.

В общей схеме сернокислотного производства существенное значение имеют две первые стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты.


3. Краткое описание современных промышленных способов получения серной кислоты. Пути совершенствования и перспективы развития производства.

Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

где I – стадия получения печного газа (оксида серы (IV)),

II – стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции. В общем случае производство серной кислоты может быть выражено в следующем виде:

Сырье подготовка сырья сжигание (обжиг) сырья

очистка печного газа контактирование абсорбция

контактированного газа СЕРНАЯ КИСЛОТА

Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

В зависимости от того, как осуществляется процесс окисления SО 2 в SО 3 , различают два основных метода получения серной кислоты.

В контактном методе получения серной кислоты процесс окисления SО 2 в SО 3 проводят на твердых катализаторах.

Триоксид серы переводят в серную кислоту на последней стадии процесса – абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

SО 3 + Н 2 О Н 2 SО 4

При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

SО 3 + N 2 О 3 + Н 2 О Н 2 SО 4 + 2NО

В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

Рассмотрим процесс получения серной кислоты контактным методом из двух видов сырья: серного (железного) колчедана и серы.

1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

Окисление дисульфида железа пиритного концентрата кислородом воздуха:

Каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

2SО 2 + О 2 2SО 3

Абсорбция оксида серы (VI) с образованием серной кислоты:

SО 3 + Н 2 О Н 2 SО 4

По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

Принципиальная (структурная) схема этого производства представлена на рис. 2:

Рис. 2 Структурная схема производства серной кислоты из флотационного колчедана методом одинарного контактирования.

I – получение обжигового газа: 1 – обжиг колчедана; 2 – охлаждение газа в котле-утилизаторе; 3 – общая очистка газа, 4 – специальная очистка газа; II – контактирование: 5 – подогрев газа в теплообменнике; 6 – контактирование; III – абсорбция: 7 – абсорбция оксида серы (IV) и образование серной кислоты.

Обжиг колчедана в токе воздуха представляет собой необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа:

FеS 2 = 2FеS + S 2

и окисления продуктов диссоциации:

S 2 + 2О 2 = 2SО 2

4FеS + 7О 2 = 2Fе 2 S 3 + 4SО 2

что описывается общим уравнением

4FеS 2 + 11О 2 = 2Fе 2 S 3 + 8SО 2 ,

где ΔН = 3400 кДж.

Увеличение движущей силы процесса обжига достигается флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащением воздуха кислородом и применением избытка воздуха при обжиге до 30 % сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 о С, так как за этим пределом начинается спекание частиц обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха.

В качестве реакторов для обжига колчедана могут применяться печи различной конструкции: механические, пылевидного обжига, кипящего слоя (КС). Печи кипящего слоя отличаются высокой интенсивностью (до 10 000 кг/м 2 ·сут), обеспечивают более полное выгорание дисульфида железа (содержание серы в огарке не превышает 0,005 мас. долей) и контроль температуры, облегчают процесс утилизации теплоты реакции обжига. К недостаткам печей КС следует отнести повышенное содержание пыли в газе обжига, что затрудняет его очистку. В настоящее время печи КС полностью вытеснили печи в других типов в производстве серной кислоты из колчедана.

2) Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей. К ним относятся:

– особая конструкция печей для получения печного газа;

– повышенное содержание оксида серы (IV) в печном газе;

– отсутствие стадии предварительной очистки печного газа.

Последующие операции контактирования оксида серы (IV) по физико-химическим основам и аппаратурному оформлению не отличаются от таковых для процесса на основе колчедана и оформляются обычно по схеме ДКДА. Термостатирование газа в контактном аппарате в этом методе осуществляется обычно путем ввода холодного воздуха между слоями катализатора.

Принципиальная схема производства серной кислоты из серы представлена на рис. 3:

Рис. 3. Структурная схема производства серной кислоты из серы.

1 – осушка воздуха; 2 – сжигание серы; 3 – охлаждение газа, 4 –контактирование; 5 –абсорбция оксида серы (IV) и образование серной кислоты.

Существует также способ производства серной кислоты из сероводорода, получивший название «мокрого» катализа, состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в токе воздуха, подается без разделения на контактирование, где оксид серы (IV) окисляется на твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт.

Таким образом, в отличие от методов производства серной кислоты из колчедана и серы, в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательные стадии:

1. Сжигание сероводорода:

Н 2 S + 1,5О 2 = SО 2 + Н 2 О – ΔН 1 , где ΔН 1 = 519 кДж

с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1: 1).

2. Окисление оксида серы (IV) до оксида серы (VI):

SО 2 + 0,5О 2 <=> SО 3 – ΔН 2 , где ΔН 2 = 96 кДж,

с сохранением эквимолекулярности состава смеси оксида серы (IV) и паров воды (1: 1).

3. Конденсация паров и образование серной кислоты:

SО 3 + Н 2 О <=> Н 2 SО 4 – ΔН 3 , где ΔН 3 = 92 кДж

таким образом, процесс мокрого катализа описывается суммарным уравнением:

Н 2 S + 2О 2 = Н 2 SО 4 – ΔН, где ΔН = 707 кДж.

Большие масштабы производства серной кислоты особенно остро ставят проблему его совершенствования. Здесь можно выделить следующие основные направления:

1. Расширение сырьевой базы за счет использования отходящих газов котельных теплоэлектроцентралей и различных производств.

2. Повышение единичной мощности установок. Увеличение мощности в два-три раза снижает себестоимость продукции на 25 – 30%.

3. Интенсификация процесса обжига сырья путем использования кислорода или воздуха, обогащенного кислородом. Это уменьшает объем газа, проходящего через аппаратуру, и повышает ее производительность.

4. Повышение давления в процессе, что способствует увеличению интенсивности работы основной аппаратуры.

5. Применение новых катализаторов с повышенной активностью и низкой температурой зажигания.

6. Повышение концентрации оксида серы (IV) в печном газе, подаваемом на контактирования.

7. Внедрение реакторов кипящего слоя на стадиях обжига сырья и контактирования.

8. Использование тепловых эффектов химических реакций на всех стадиях производства, в том числе, для выработки энергетического пара.

Важнейшей задачей в производстве серной кислоты является повышение степени превращения SО 2 в SО 3 . Помимо увеличения производительности по серной кислоте выполнение этой задачи позволяет решить и экологические проблемы – снизить выбросы в окружающую среду вредного компонента SО 2 .

Повышение степени превращения SО 2 может быть достигнуто разными путями. Наиболее распространенный из них – создание схем двойного контактирования и двойной абсорбции (ДКДА).


4. Физико-химические свойства системы, положенной в основу химико-технологического процесса окисления сернистого ангидрида.

Реакция окисления оксида серы (IV) в оксид серы (IV), лежащая в основе процесса контактирования обжигового газа, представляет собой гетерогенно-каталитическую, обратимую, экзотермическую реакцию и описывается уравнением:

SО 2 + 0,5О 2 <=> SО 3 – ΔН.

Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 о С и около 93 кДж при температуре контактирования. Система «SО 2 – О 2 – SО 3 » характеризуется состоянием равновесия в ней и скоростью окисления оксида серы (IV), от которых зависит суммарный результат процесса.

Константа равновесия реакции окисления оксида серы (IV) равна:

(1)

где – равновесные парциальные давления оксида серы (VI), оксида серы (IV) и кислорода соответственно.

Степень превращения оксида серы (IV) в оксид серы (VI) или степень контактирования, достигаемая на катализаторе, зависит от активности катализатора, температуры, давления, состава контактируемого газа и времени контактирования и описывается уравнением:

(2)

где – те же величины, что и в формуле (1)

Из уравнений (1) и (2) следует, что равновесная степень превращения оксида серы (IV) связана с константой равновесия реакции окисления:

(3)

Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе представлена в табл. 1 и на рис. 4.

Таблица 1. Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе

Рис. 4. Зависимость равновесной степени превращения оксида серы (IV) в оксид серы (VI) от температуры (а), давления (б) и содержания оксида серы (IV) в газе (в).

Из уравнения (3) и табл. 4 следует, что с понижением температуры и повышением давления контактируемого газа равновесная степень превращения Х р возрастает, что согласуется с принципом Ле-Шателье. В то же время, при постоянных температуре и давлении равновесная степень превращения тем больше, чем меньше содержание оксида серы (IV) в газе, то есть чем меньше соотношение SО 2: О 2 . Это отношение зависит от вида обжигаемого сырья и избытка воздуха. На этой зависимости основана операция корректирования состава печного газа, то есть разбавление его воздухом для снижения содержания оксида серы (IV).

Степень окисления оксида серы (IV) возрастает с увеличением времени контактирования, приближаясь к равновесию по затухающей кривой (рис. 5).

Рис. 5. Зависимость Х р от времени контактирования.

Следовательно, время контактирования должно быть таким, чтобы обеспечить достижение равновесия в системе. Из рис. 5 следует, что чем выше температура, тем скорее достигается равновесие (t 1 < t 2), но тем меньше степень превращения (Х 1 < Х 2 при Т 1 > Т 2). Таким образом, выход оксида серы (IV) зависит как от температуры, так и от времени контактирования. При этом, для каждого времени контактирования зависимость выхода от температуры выражается соответствующей кривой, имеющей максимум. Очевидно, что огибающая эти максимумы линия АА (рис. 6) представляет кривую оптимальных температур для различного времени контактирования, близкую к равновесной кривой.

Рис. 6. Зависимость выхода оксида серы (IV) от температуры при различном времени контактирования.

От скорости окисления зависит количество оксида серы (IV), окисляющееся в единицу времени, и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достижимой в данных условиях.

Энергия активации реакции окисления оксида серы (IV) кислородом в оксид серы (VI) весьма велика. Поэтому, в отсутствие катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации и увеличить скорость окисления.

В производстве серной кислоты в качестве катализатора применяют контактные массы на основе оксида ванадия (V) марок БАВ и СВД, названные так по начальным буквам элементов, входящих в их состав.

БАВ (барий, алюминий, ванадий) состава:

V 2 О 5 (7 %) + К 2 SО 4 + ВаSО 4 + Аl 2 (SО 4) 3 + SiО 2 (кремнезем)

СВД (сульфо–ванадато–диатомовый) состава

V 2 О 5 (7 %) + К 2 S 2 О 7 + диатомит + гипс

катализатор активатор носитель

Для описания скорости окисления оксида серы (IV) в оксид серы (VI) на ванадиевом катализаторе при неподвижном слое катализатора предложены различные кинетические уравнения. К ним относится, например, уравнение (4), связывающее скорость реакции со степенью превращения оксида серы (IV), константой скорости реакции, константой равновесия и давлением газа:

(4)

где Х – равновесная степень превращения оксида серы (IV),

k – константа скорости окисления,

а – начальная концентрация оксида серы (IV) в газе,

b – начальная концентрация кислорода в газе,

Р – общее давление в газе,

К р – константа равновесия реакции.

Из уравнений (4) и (5) следует, что скорость окисления зависит от константы скорости реакции, сильно возрастающей при повышении температуры. Однако при этом уменьшается константа равновесия К р и уменьшается значение члена в уравнении (4). Таким образом, скорость процесса окисления оксида серы (IV) зависит от двух величин, изменяющихся с ростом температур в противоположном направлении. Вследствие этого кривая зависимости скорости окисления от температуры должна проходить через максимум. Из уравнения (4) также следует, что скорость окисления оксида серы (IV) тем больше, чем меньше достигаемая в этом процессе степень превращения оксида серы (IV) в оксид серы (VI). Вследствие этого для каждой степени превращения зависимость скорости реакции от температуры будет выражаться индивидуальной кривой, имеющей максимум. На рис. 7 представлена серия подобных кривых, соответствующих различные степеням превращения для газа постоянного состава. Из него следует, что скорость реакции окисления достигает максимума при определенных значениях температур, которая тем выше, чем меньше эта степень превращения, и представляют, очевидно, оптимальные температуры.

Рис. 7. Зависимость скорости окисления оксида серы (IV) от температуры при различных степенях превращения Х 1 < Х 2 < Х 3 < Х 4

Линия АА, соединяющая точки оптимальных температур, называется линией оптимальной температурной последовательности (ЛОТ) и указывает, что для достижения наилучших результатов процесс контактирования следует начинать при высокой температуре, обеспечивающей большую скорость процесса (на практике около 600 о С), а затем для достижения высокой степени превращения снижать температуру, выдерживая температурный режим по ЛОТ. Линии ВВ и СС на рис. 7 очерчивают область допустимых температур в реальном технологическом процессе контактирования.

В таблице 2 представлен температурный режим работы 4-х слойного контактного аппарата с промежуточным теплообменом, установленный в соответствии с изложенным выше принципом:

Таблица 2. Температурный режим контактного узла

Таким образом, противоречие между кинетикой и термодинамикой процесса процесса окисления оксида серы (IV) достаточно успешно снимается конструкцией и температурным режимом работы контактного аппарата. Это достигается разбивкой процесса на стадии, каждая из которых отвечает оптимальным условиям процесса контактирования. Тем самым определяются и начальные параметры режима контактирования: температура 400 – 440 о С, давление 0,1 МПа, содержание оксида серы (IV) в газе 0,07 об. долей, содержание кислорода в газе 0,11 об. долей.


5. Аппаратурно–технологическая схема тонкой очистки сернистого газа и окисления сернистого ангидрида в четырехслойном контактном аппарате с фильтрующими слоями катализатора.

Реакторы или контактные аппараты для каталитического окисления оксида серы (IV)по своей конструкции делятся на аппараты с неподвижным слоем катализатора (полочные или фильтрующие), в которых контактная масса расположена в 4-5 слоях, и аппараты кипящего слоя. Отвод тепла после прохождения газом каждого слоя катализатора осуществляется путем введения в аппарат холодного воздуха или газа, или с помощью строенных в аппарат или вынесенных отдельно теплообменников.

В настоящее время в производстве серной кислоты и олеума контактным методом наиболее распространенной является технологическая схема с использованием принципа двойного контактирования «ДКДА» (двойное контактирование – двойная абсорбция). Часть подобной схемы, за исключением печного отделения и отделения общей очистки газ, технологически однотипных для всех схем, представлена на рис. 9.

Производительность установки до 1500 т/сут по моногидрату. Расходные коэффициенты (на 1 т моногидрата): колчедан 0,82 т, вода 50 м 3 , электроэнергия 82 кВт·ч.

Рис. 9. Технологическая схема производства серной кислоты из колчедана двойным контактированием ДКДА.

1 – полая промывная башня, 2 – промывная башня с насадкой, 3 – увлажнительная башня, 4 – электрофильтры, 5 – сушильная башня, 6 – турбогазодувка, 7 – сборники 75 %-ной кислоты, 8 – сборник продукционной кислоты, 9 – теплообменники, 10 – контактный аппарат, 11 – олеумный абсорбер, 12 и 13 – моногидратные абсорберы. Потоки продуктов: I – печной газ при 300 о С, II – 75 %-ная серная кислота, III – охлажденная 98 %-ная кислота, IV – продукционная кислота на охлаждение, V – охлажденный олеум или моногидрат, VI – продукционный олеум на охлаждение, VII – выхлопные газы.


6. Материальный баланс 1 ступени контактного аппарата окисления сернистого газа.

Данные для расчета:

1. Общая производительность по серной кислоте в пересчете на моногидрат – 127 т/час;

2. полнота абсорбции серного ангидрида – 99,8 %;

3. состав исходного газа:

SО 2 – 6,82 % (об.), О 2 – 10,4 % (об.), СО 2 – 0,4 % (об.), N 2 – 82,38 % (об.);

температура 520 о С;

степень достижения равновесия – α = 0,650

1. Рассчитаем равновесную степень превращения SО 2 в SО 3 . Рассмотрим расчет равновесия по известным значениям К р для реакции окисления диоксида серы:

SО 2 + 0,5О 2 + СО 2 +N 2 <=> SО 3 + СО 2 +N 2

где а, b, т, п – количество (моль) компонентов исходной смеси SО 2 , О 2 , СО 2 и N 2 (а + b+ т + п = 1).

Количество каждого компонента (моль) при достижении равновесной степени превращения х А,е составит

SО 2 О 2 СО 2 N 2 SО 3

а – а · х А,е b – 0,5а · х А,е т п а · х А,е

Общее число равновесной смеси:

а – а · х А,е + b – 0,5а · х А,е + т + п + а · х А,е = 1 – 0,5а · х А,е

Константа равновесия

может быть рассчитано по уравнению (стр.433, ):

При температуре 520 о С (793 К) константа равновесия равна:

Состояние равновесия реакции можно характеризовать значениями равновесной степени превращения

Обозначив общее давление через р, выразим равновесные давления компонентов:

(6)

Подставляя исходные данные в уравнение (6), получим (р = 0,1 МПа):

Откуда методом итераций находим и, следовательно, в равновесной смеси содержится:

SО 3 – 6,38 % (об.), SО 2 – 0,688 % (об.), О 2 – 7,54 % (об.), СО 2 – 0,412 % (об.), N 2 – 84,98 % (об.);

2. Практическая степень превращения равна:

3. Суммарное уравнение окисления оксида серы (IV) в оксид серы (VI) и абсорбции оксида серы (VI) с образованием серной кислоты:

SО 2 + 0,5О 2 + Н 2 О Н 2 SО 4

64 г/моль 98 г/моль

Исходя из уравнения реакции для получения 127 кг/ч серной кислоты необходимо оксида серы (IV):

кг

С учетом рассчитанной степени превращения и заданной полноты абсорбции, практически необходимо оксида серы (IV):

кг

моль

4. Пересчитаем объемный состав газа в массовый.

моль

Количество компонентов исходной смеси равно:

моль

моль

моль

Количество компонентов полученного газа:

моль

кг

моль

кг

Общее количество моль газовой смеси равно

моль

моль

моль

моль

Результаты расчетов сведем в таблицу 3

Таблица 3. Материальный баланс процесса контактного аппарата окисления сернистого газа.

Литература.

1. Кутепов А. М. Бондарева Т. И., Беренгартен М. Г. Общая химическая технология. М. Высш. школа. 1990.

2. Соколов Р. С. Химическая технология. – М: Гуманит. изд. Центр БЛАДОС, 2000.

3. Расчеты химико-технологических процессов // Под общ. ред. И. П. Мухленова. - Л.: Химия, 1976

4. Бесков В. С., Сафронов В. С. Общая химическая технология и основы промышленной экологии. - М.: Химия, 1999.

5. Общая химическая технология и основы промышленной экологии.// под ред. В. И. Ксензенко. - М.: «КолосС», 2003.

Контактной серной кис­лоты отражает технологическая схема, в которой исход­ным сырьем служит колчедан (классическая схема) (рис. 34). Эта схема включает четыре основные стадии: 1) получение сернистого ангидрида, 2) очистка газа, со­держащего сернистый ангидрид, от примесей, 3) окисле­ние (на катализаторе) сернистого ангидрида до серного, 4) абсорбция серного ангидрида.

К аппаратам первой стадии процесса относится обжи­говая печь 2, в которой получают сернистый газ, и сухой электрофильтр 5, в котором обжиговый газ очищается от пыли. На вторую стадию процесса - очистку обжиго­вого газа от примесей, ядовитых по отношению к катали­затору, газ поступает при 300-400° С. Газ очищают, промывая его более холодной, чем сам газ, серной кис­лотой. Для этого последовательно газ пропускают через такие аппараты: промывные башни 6 и 7, первый мокрый электрофильтр 8, увлажнительную башню 9 и второй мокрый электрофильтр 8. В этих аппаратах газ очищает­ся от мышьяковистого, серного и селенистого ангидридов, а также от остатков пыли. Далее газ освобождается от влаги в сушильной башне 10 и брызг серной кислоты в

Брызгоуловнтеле 11. Обе промывные 6 п 7, увлажнитель­ная 9 и сушильная 10 башни орошаются циркулирующей серной кислотой. В цикле орошения есть сборники 20, из которых серная кислота насосами подается па орошение башен. При этом кислота предварительно охлаждается в холодильниках 18, где из промывных башен отводится в основном физическое тепло обжигового газа, а пз су­шильной- тепло разбавления сушильной серной кисло­ты водой.

Нагнетатель 12 в этой схеме помещен примерно в се­редине системы; все аппараты, расположенные перед ним, находятся под разрежением, после него - пел давлени­ем. Таким образом, под давлением работают аппараты, обеспечивающие окисление сернистого ангидрида до сер­ного и абсорбцию серного ангидрнда.

При окислении сернистого ангидрнда до ссрниго вы­деляется большое количество тепла, которое используют для нагревания очищенного обжигового газа, поступаю­щего в контактный аппарат 14. Горячий серный ангидрид через стенки труб, по которым он проходит в теплооб­меннике 13, передает тепло более холодному сернистому ангидриду, проходящему в межтрубном пространстве теплообменника 13 и поступающему в контактный аппа­рат 14. Дальнейшее охлаждение серного ангидрнда перед абсорбцией в олеумном 16 и моногидратпом 17 абсорберах происходит в ангидридном холодильнике (экономайзере) 15.

При поглощении серного ангидрида в абсорбционном отделении выделяется большое количество гепла, кото­рое передается циркулирующей кислоте, орошающей олеумный 16 и моногидратный 17 абсорберы, и отводит­ся в холодильниках 19 и 18.

Концентрация олеума и моногидрата повышается вследствие поглощения все новых и новых порции серно­го ангидрида. Сушильная же кислота все время разбав­ляется из-за поглощения паров воды пз обжгиового газа Поэтому для поддержания стабильных концентраций этих кислот существуют циклы разбавления олсумсі моно­гидратом, моногидрата - сушильной кислотой и цикл повышения концентрации сушильной кислоты моногидра­том. Так как воды, поступающей в моногидратный абсор­бер с сушильной кислотой, практически всегда недоста­точно, чтобы получить нужную концентрацию КИСЛО!.", в сборник моногидратного абсорбера добавляют воду.

В первой промывной башне 6 концентрация кислоты возрастает вследствие поглощения из газа небольшого количества серного ангидрида, образующегося при об­жиге колчедана в печах. Для поддержания стабильной концентрации промывной кислоты в первой промывной башне в ее сборник передается кислота из второй про­мывной башни. Для поддержания необходимой концен­трации кислоты во второй промывной башне в нее пере­дается кислота из увлажнительной башни. Если при этом для получения стандартной концентрации кислоты в первой промывной башне не хватает воды, то ее вводят в сборник либо увлажнительной, либо второй промыв­ной башни.

На контактных сернокислотных заводах обычно по­лучают три вида продукции: олеум, техническую серную кислоту и разбавленную серную кислоту из первой промывной башни (после выделения из кислоты се­лена).

На некоторых заводах промывную кислоту после очистки от примесей используют для разбавления моно­гидрата или для приготовления концентрированной сер­ной кислоты путем разбавления олеума. Иногда олеум просто разбавляют водой.

По схеме, "приведенной на рис. 34, перерабатывается газ, содержащий 4-7,5% S02. При более низкой кон­центрации S02 тепла, выделяющегося в контактном от­делении, не хватает для подогрева газа, поступающего на контактирование (т. е. не обеспечивается автотермич - ность процесса). При более высокой концентрации S02 понижается степень контактирования.

В настоящее время ведутся работы по усовершенство­ванию схемы производства контактной серной кислоты путем нового оформления отдельных стадий этого про­цесса и применения более мощных аппаратов, обеспечи­вающих высокую производительность систем.

На многих заводах на сушильных башнях и моногид - ратных абсорберах применяются распределители кисло­ты, после которых в газе содержится минимальное коли­чество брызг. Кроме того, непосредственно в башнях или после них предусмотрены устройства для отделения ка­пель тумана н брызг. На ряде заводов из технологиче­ской схемы исключена увлажнительная башня; ее отсут­ствие компенсируется увеличением мощности мокрых электрофильтров или некоторым изменением режима ра­боты промывных башен для более интенсивного увлаж­нения газа во второй промывной башне, что дает воз­можность сократить затраты электроэнергии на мокрую очистку.

В сернокислотной промышленности начинают широко применять интенсивные и более совершенные аппараты, заменяющие насадочные башни, оросительные холодиль­ники, центробежные насосы и пр. Например, для выде­ления S02 из отходящих газов в производстве серной кислоты контактным способом применяют интенсивные аппараты распыляющего типа (APT), в которых жид­кость распыляется потоком газа.

В результате применения кислородного дуіья при об­жиге сырья в цветной металлургии повышается концен­трация S02 в отходящих газах, что создает возможность интенсификации сернокислотных систем, работающих на этих газах. Использование кислотостойких материалов при изготовлении аппаратуры для производства серной кислоты контактным способом позволяет значительно улучшить качество продукции и увеличить выпуск реак­тивной серной кислоты.

1. Введение

2. Общая характеристика установки производства серной кислоты

3. Сырьевые источники получения серной кислоты

4.Краткое описание промышленных способов получения серной кислоты

5.Выбор катализатора

6. Обоснование способа производства

7. Стадии и химизм процесса

8. Термодинамический анализ

9. Кинетика процесса окисления SO 2

10. Конденсация серной кислоты

11. Термодинамический анализ процесса конденсации

12. Описание технологической схемы процесса

13. Расчет материального баланса

14. Расчет теплового баланса

15. Расчет контактного аппарата

16. Меры безопасности при эксплуатации производственного объекта

17. Список литературы

1. Введение

Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО 3 · т Н 2 О.

Моногидрат серной кислоты - бесцветная маслянистая жидкость с температурой кристаллизации 10,37 о С, температурой кипения 296,2 о С и плотностью 1,85 т/м 3 . С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н 2 SО 4 · Н 2 О, Н 2 SО 4 · 2Н 2 О, Н 2 SО 4 · 4Н 2 О и соединения с оксидом серы Н 2 SО 4 · SО 3 и Н 2 SО 4 ·2SО 3 .

Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.

Температура кипения серной кислоты также зависит от ее концентрации, то есть состава системы "оксид серы (VI) - вода". С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5 о С при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 о С (температура кипения моногидрата) до 44,7 о С, отвечающей температуре кипения 100 %-ного оксида серы (VI).

При нагревании паров серной кислоты выше 400 о С она подвергается термической диссоциации по схеме:

400 о С 700 о С

2 Н 2 SО 4 <=> 2Н 2 О + 2SО 3 <=> 2Н 2 О + 2SО 2 + О 2 .

Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.

Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон (от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности.

2. Общая характеристика установки производства серной кислоты

Установка предназначена для получения технической серной кислоты из сероводородсодержащего газа. Сероводородный газ поступает с установок гидроочистки, блока сероочистки газов, установки регенерации амина и отпарки кислых стоков.

Ввод установки в эксплуатацию - 1999 г.

Установка производства серной кислоты рассчитана на переработку 24 тыс. тонн в год сероводородсодержащего газа.

Проектная производительность установки по серной кислоте составляет 65 тыс. тонн в год.

Проект установки выполнен ОАО "ВНИПИнефть" на основании технологии датской фирмы "Хальдор Топсе АС" и ОАО "НИУИФ" г. Москва.

Российская часть установки представлена секцией подготовки сырья, котлами-утилизаторами КУ-А,В,С сжигания сероводородсодержащего газа, блоками деаэрации обессоленной воды, нейтрализации сернокислотных сбросов и обеспечения установки воздухом КИП.

Датской стороной предоставлен блок WSA в составе:

· контактного аппарата (конвертера);

· конденсатора;

· системой циркуляции и откачки серной кислоты;

· системой воздуходувок подачи воздуха на сжигание H 2 S, охлаждения и разбавления технологического газа;

· системой подачи силиконового масла (блок управления кислотными парами) в технологический газ с целью снижения выбросов SO x в атмосферу.

3. Сырьевые источники получения серной кислоты

Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV).

Природные залежи самородной серы невелики, хотя кларк ее равен 0,1 %. Чаще всего сера находится в природе в форме сульфидов металлов и сульфатов метало, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов.

Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV).

При этом доля колчедана в балансе сырья уменьшается, а доля серы возрастает.

В общей схеме сернокислотного производства существенное значение имеют две первые стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты.

4. Краткое описание промышленных способов получения серной кислоты

Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

где I – стадия получения печного газа (оксида серы (IV)),

II – стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции.

В общем случае производство серной кислоты может быть выражено в следующем виде:

подготовка сырья сжигание (обжиг) сырья очистка печного газа контактирование абсорбция

контактированного газа

СЕРНАЯ КИСЛОТА

Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

В зависимости от того, как осуществляется процесс окисления SО 2 вSО 3 , различают два основных метода получения серной кислоты.

В контактном методе получения серной кислоты процесс окисления SО 2 вSО 3 проводят на твердых катализаторах.

Триоксид серы переводят в серную кислоту на последней стадии процесса – абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

SО 3 + Н 2 О

Н 2 SО 4

При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

SО 3 + N 2 О 3 + Н 2 О

Н 2 SО 4 + 2NО

В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

Окисление дисульфида железа пиритного концентрата кислородом воздуха:

4FеS 2 + 11О 2 = 2Fе 2 S 3 + 8SО 2 ,

Каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

2SО 3

Абсорбция оксида серы (VI) с образованием серной кислоты:


SО 3 + Н 2 О

Н 2 SО 4

По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

  • 7.3. Контактирование оксида серы (IV)
  • 7.5. Технологическая схема производства серной кислоты контактным методом
  • 7.1. Химическая и принципиальная схемы производства

    Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

    По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

    Принципиальная (структурная) схема этого производства представлена на рис. 7.1.

    Рисунок 7.1 – Структурная схема производства серной кислоты из флотационного колчедана.

    • I – получение обжигового газа: 1 – обжиг колчедана; 2 – охлаждение газа в котле–утилизаторе; 3 – общая очистка газа; 4 – специальная очистка газа;
    • II – контактирование: 5 – подогрев газа в теплообменнике; 6 – контактирование;
    • III – абсорбция: 7 – абсорбция оксида серы (VI) и образование серной кислоты

    7.2. Окислительный обжиг колчедана

    Обжиг колчедана в токе воздуха представляет необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа:

    и окисления продуктов диссоциации

    что описывается общим уравнением:

    Скорость процесса окислительного обжига выражается общим для гетерогенных процессов уравнением

    • где К М – коэффициент массопередачи;
    • F – поверхность контакта фаз (катализатора);
    • D С – движущая сила процесса.

    Таким образом, скорость процесса обжига зависит от температуры (через К М), дисперсности обжигаемого колчедана (через F, концентрации дисульфида железа в колчедане и концентрации кислорода в воздухе (через DС)). На рис. 7.2 представлена зависимость скорости обжига колчедана от температуры и размеров частиц обжигаемого колчедана.

    Рисунок 7.2 – Зависимость скорости обжига колчедана от температуры (а) и размеров частиц (б)

    Увеличение движущей силы процесса обжига достигается флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащение воздуха кислородом и применением избытка воздуха при обжиге до 30% сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 0 С, так как за этим пределом начинается спекание частиц обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха.

    В качестве реакторов для обжига колчедана могут применяться печи различной конструкции: механические, пылевидного обжига, кипящего слоя (КС). Печи кипящего слоя отличаются высокой интенсивностью (до 10000 кг/м 2 ×сут), обеспечивают более полное выгорание дисульфида железа (содержание серы в огарке не превышает 0,005 масс. долей) и контроль температуры, облегчают процесс утилизации теплоты. К недостаткам печей КС следует отнести повышенное содержание пыли в газе обжига, что затрудняет его очистку. В настоящее время печи КС полностью вытеснили печи других типов в производстве серной кислоты из колчедана.

    Обжиговый (печной) газ и огарок - продукты окислительного обжига колчедана. Огарок, состоит из оксида железа (III), пустой породы и невыгоревшего остатка дисульфида железа.

    Состав обжигового газа зависит от природы сырья, состава и избытка воздуха при его обжиге. В него входят оксид серы (IV), кислород, азот и незначительное количество оксида серы (VI), образовавшегося за счет каталитического действия оксида железа (III). Если не учитывать содержание последнего, то соотношение между кислородом и оксидом серы (IV) в печном газе может быть выражено следующими уравнениями:

    • при обжиге колчедана С О2 = 21 – 1,296 С SO 2 ; (7.2а)
    • при сжигании серы С О2 = 21 – С SO 2 ; (7.2б)
    • при сжигании сероводорода С О2 = 21 – 1,605С SO 2 , (7.2в)

    где С SO 2 и С О2 – содержание оксида серы (IV) и кислорода в печном газе.

    На практике при обжиге колчедана печной газ содержит 13–14% оксида серы (IV), 2 % кислорода и около 0,1% оксида серы (VI). Так как в печном газе должен быть избыток кислорода для последующего окисления оксида серы (IV), его состав корректируют, разбавляя воздухом до содержания оксида серы (IV) 7–9% и кислорода 11–9%.

    7.3. Очистка обжигового (печного) газа

    Обжиговый газ необходимо очистить от пыли, сернокислотного тумана и веществ, являющихся каталитическими ядами или представляющих ценность как побочные продукты. В обжиговом газе содержится до 300 г/м 3 пыли, которая на стадии контактирования засоряет аппаратуру и снижает активность катализатора, а также туман серной кислоты. Кроме того, при обжиге колчедана одновременно с окислением дисульфида железа окисляются содержащиеся в колчедане сульфиды других металлов. При этом мышьяк и селен образуют газообразные оксиды As 2 O 3 и SeO 2 , которые переходят в обжиговый газ и становятся каталитическими ядами для ванадиевых контактных масс.

    Пыль и сернокислотный туман удаляют из обжигового газа в процессе общей очистки газа, которая включает операции механической (грубой) и электрической (тонкой) очистки. Механическая очистка газа осуществляется пропусканием газа через центробежные пылеуловители (циклоны) и волокнистые фильтры, снижающие содержание пыли в газе до 10–20 г/м 3 . Электрическая очистка газа в электрофильтрах снижает содержание пыли и тумана в газе до 0,05–0,1 г/м 3 .

    После общей очистки обжиговый газ, полученный из колчедана, обязательно подвергается специальной очистке для удаления остатков пыли и сернокислотного тумана и, главным образом, соединений мышьяка и селена, которые при этом утилизируют. Специальная очистка газа включает операции охлаждения его до температуры ниже температур плавления оксида мышьяка (315 0 С) и селена (340 0 С) в башнях, орошаемых последовательно 50% (полая башня) и 20% серной кислотой (башня с насадками), удаления сернокислотного тумана в мокрых электрофильтрах и завершающей осушки газа в скрубберах, орошаемых 95% серной кислотой. Из системы специальной очистки обжиговый газ выходит с температурой 140–150 0 С.

    Оксид селена (IV), извлекаемый из обжигового газа, восстанавливается растворенным в серной кислоте оксидом серы (IV) до металлического селена: который осаждается в отстойниках.

    Новым прогрессивным методом очистки обжигового газа является адсорбция содержащихся в нем примесей твердыми поглотителями, например, силикагелем или цеолитами. При подобной сухой очистке обжиговый газ не охлаждается и поступает на контактирование при температуре около 400 0 С, вследствие чего не требует интенсивного дополнительного подогрева.

    7.3. Контактирование оксида серы (IV)

    Процесс контактирования обжигового газа – реакция окисления оксида серы IV) до оксида серы (VI), представляет собой гетерогенно–каталитическую, обратимую, экзотермическую реакцию и описывается уравнением

    Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 0 С и около 93 кДж при температуре контактирования. Система «SO 2 – O 2 – SO 3 » характеризуется состоянием равновесия в ней и скоростью процесса окисления оксида серы (IV), от которых зависит суммарный результат процесса.

    7.3.1. Равновесие в системе

    Константа равновесия реакции окисления оксида серы (IV) равна

    где: p SO 3 , p SO 2 , p O 2 – равновесные парциальные давления оксида серы (VI), оксида серы (IV) и кислорода соответственно.

    Степень превращения оксида серы (IV) в оксид серы (IV) или степень контактирования, достигаемая на катализаторе, зависит от активности катализатора, температуры, давления, состава контактируемого газа и времени контактирования и описывается уравнением

    где p SO 3 и p SO 2 –те же величины, что и в (7.3).

    Из уравнений 7.3 и 7.4 следует, что равновесная степень превращения оксида серы (IV) связана с константой равновесия реакции окисления уравнением

    где К р – константа равновесия.

    Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе представлена в таблице 7.2 и на рис. 7.3.

    Таблица 7.2 – Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе

    Температура, 0 С*

    Давление, МПа**

    * При давлении 0,1 МПа и содержании оксида серы (IV) 0,07 об. долей.

    ** При температуре 400 0 С и содержании оксида серы (IV) 0,07 об.долей.

    Рисунок 7.3 – Зависимость равновесной степени превращения оксида серы (IV) в оксид серы (VI) от температуры (а), давления (б) и содержания оксида серы (IV) в газе (в)

    Из уравнения 7.5 и табл. 7.2 следует, что с понижением температуры и повышением давления контактируемого газа равновесная степень превращения Х р возрастает, что согласуется с принципом Ле–Шателье. В то же время при постоянных температуре и давлении равновесная степень превращения тем больше, чем меньше содержание оксида серы (IV) в газе, то есть чем меньше отношение SO 2: O 2 . Это отношение зависит от вида обжигаемого сырья и избытка воздуха. На этой зависимости основана операция корректирования состава печного газа, то есть разбавление его воздухом для снижения содержания оксида серы (IV).

    Степень окисления оксида серы (IV) возрастает с увеличением времени контактирования, приближаясь к равновесию по затухающей кривой (рис. 1.4). Следовательно, время контактирования должно быть таким, чтобы обеспечить достижение равновесия в системе. Из рис. 1.4 следует, что чем выше температура, тем скорее достигается равновесие (t 1 < t 2), но тем меньше равновесная степень превращения (Х 1 < X 2 при Т 1 > T 2). Таким образом, выход оксида серы (VI) зависит как от температуры, так и от времени контактирования. При этом для каждого времени контактирования зависимость выхода от температуры выражается соответствующей кривой, имеющей максимум. Очевидно, что огибающая эти максимумы линия АА (рис.1.5) представляет кривую оптимальных температур для различного времени контактирования, близкую к равновесной кривой.

    7.3.2. Скорость окисления оксида серы (IV)

    От скорости окисления зависит количество оксида серы (IV), окисляющееся в единицу времени и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достигаемой в данных условиях.

    Энергия активации реакции окисления оксида серы (IV) кислородом в оксид серы (VI) весьма велика. Поэтому при отсутствии катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации реакции и увеличить скорость окисления в соответствии с зависимостью для константы скорости:

    • где k 0 – константа скорости химической реакции;
    • E – энергия активации, Дж/моль;
    • R – универсальная газовая постоянная (8,326 Дж/моль * К);
    • T – температура, 0 К.

    Если без катализатора реакция окисления 2SO 2 + O 2 = 2 SO 3 протекает как реакция третьего порядка с энергией активации более 280 кДж/моль, то в присутствии ванадиевого катализатора ее порядок снижается до 1,8, а энергия активации составляет 92 кДж/моль.

    В производстве серной кислоты в качестве катализатора применяют константные массы на основе оксида ванадия (V) марок БАВ и СВД, названные так по начальным буквам элементов, входящих в их состав:

    БАВ (барий, алюминий, ванадий) состава:

    СВД (сульфо-ванадато-диатомовый) состава:

    Предполагается, что процесс окисления оксида серы (IV) на этих катализаторах идет через стадию диффузии реагентов к поверхности катализатора, на которой образован комплекс оксида ванадия (V) с активатором, сорбции реагентов на катализаторе с последней десорбцией продукта реакции (оксида серы (VI)):

    Схема действия ванадиевого катализатора представлена на рис. 1.6.

    Рисунок 7.6 – Схема действия катализатора: I – диффузия; II – сорбция; III – образование комплекса; IV – десорбция

    Процесс катализа состоит из нескольких последовательно протекающих элементарных актов: диффузии молекул азота, кислорода и оксида серы (IV) к катализатору (I), хемосорбции молекул реагентов на поверхности катализатора (II), химического взаимодействия кислорода и оксида серы (IV) на поверхности катализатора с переносом электронов от молекул оксида серы к молекулам кислорода и образованием неустойчивых комплексов (III) , десорбции образовавшихся молекул оксида серы (VI) (IV) и диффузии их из пор и с поверхности катализатора в газовую фазу.

    Температура зажигания контактных ванадиевых масс составляет 380–420 0 С и зависит от состава контактируемого газа, повышаясь с уменьшением содержания в нем кислорода. Контактные массы должны находиться в таком состоянии, чтобы были обеспечены минимальное гидравлическое сопротивление потоку газа и возможность диффузии компонентов через слой катализатора. Для этого контактные массы для реакторов с неподвижным слоем катализатора формуются в виде гранул, таблеток или колец средним диаметром около 5 мм, а для реакторов кипящего слоя в виде шариков диаметром около 1 мм.

    Для описания скорости окисления оксида серы (IV) в оксид серы (VI) на ванадиевом катализаторе при неподвижном слое катализатора предложены различные кинетические уравнения. К ним относятся уравнение 1.7, связывающее скорость реакции со степенью превращения оксида серы (IV) , константой скорости реакции, константой равновесия и давлением газа:

    • где Х – равновесная степень превращения оксида серы (IV);
    • k – константа скорости реакции окисления;
    • а – начальная концентрация оксида серы (IV) в газе;
    • b – начальная концентрация кислорода в газе;
    • Р – общее давление газа;
    • К р – константа равновесия реакции.

    Из уравнений 7.7 и 7.8 следует, что скорость окисления зависит от константы скорости реакции, сильно возрастающей при повышении температуры (уравнение 1.6). Однако при этом уменьшается константа равновесия К р (уравнение 1.3) и уменьшается значение члена в уравнении 1.7. Таким образом, скорость процесса окисления оксида серы (IV) зависит от двух величин, изменяющихся с ростом температуры в противоположном направлении. Вследствие этого кривая зависимости скорости окисления от температуры должна проходить через максимум. Из уравнения 1.7 также следует, что скорость окисления оксида серы (IV) тем больше, чем меньше достигаемая в этом процессе степень превращения оксида серы (IV) в оксид серы (VI). Вследствие этого для каждой степени превращения зависимость скорости реакции от температуры будет выражаться индивидуальной кривой, имеющей максимум. На рис. 7.7 представлена серия подобных кривых, соответствующих различным степеням превращения для газа постоянного состава. Из него следует, что скорость реакции окисления достигает максимума при определенных значениях температур, которые тем выше, чем меньше эта степень превращения. Линия АА, соединяющая точки оптимальных температур, называется линией оптимальной температурной последовательности (ЛОТ) и указывает, что для достижения наилучших результатов процесс контактирования следует начинать при высокой температуре, обеспечивающей большую скорость процесса (на практике около 600 0 С), а затем для достижения высокой степени превращения снижать температуру, выдерживая температурный режим по ЛОТ.

    Рисунок 7.7 – Зависимость скорости окисления оксида серы (IV) от температуры при различных степенях превращения Х1

    Линии ВВ и СС на рис. 1.7 очерчивают область допустимых колебаний температуры в реальном технологическом процессе контактирования.

    Обеспечение высокой температуры в начале процесса окисления требует больших затрат энергии на подогрев газа, поступающего на контактирование. Поэтому на практике температуру газа на входе в контактный аппарат, поступающего на первый слой катализатора, задают лишь несколько выше температуры зажигания (порядка 420 0 С). В ходе реакции выделяется большое количество тепла, и так как процесс в слое катализатора идет без отвода тепла, то температура газа повышается по адиабате 1, пока не достигает величины, равной 0,8 ЛОТ (рис.7.8). После этого газ охлаждают в теплообменнике (линия а) до тех пор, пока температура не достигнет величины 0,8 ЛОТ. После теплообменника газ направляют на второй слой катализатора и ведут процесс по адиабате 2, затем снова охлаждают и продолжают процесс до тех пор, пока не будет достигнута заданная степень контактирования Х. Обычно для этого достаточно иметь в контактном аппарате 4–5 слоев контактной массы. В табл. 7.3 представлен температурный режим 4–слойного контактного аппарата с промежуточным теплообменом, установленный в соответствии с изложенным выше принципом.

    Рисунок 7.8 – Диаграмма контактирования для 4 слоев Кт: 1,2,3,4 – адиабаты; а, б, в, г – линии охлаждения

    Таблица 7.3 – Температурный режим контактного узла

    Таким образом, противоречие между кинетикой и термодинамикой процесса окисления оксида серы (IV) достаточно успешно снимается конструкцией и температурным режимом работы контактного аппарата. Это достигается разбивкой процесса на стадии, каждая из которых отвечает оптимальным условиям протекания процесса контактирования. Тем самым определяются и начальные параметры режима контактирования: температура 400–440 0 С, давление 0,1 Мпа, содержание оксида серы (IV) в газе 0,07-0,09 об. Долей, содержание кислорода в газе 0,09- 0,11 об. долей.

    Реакторы или контактные аппараты для каталитического окисления оксида серы (IV) по своей конструкции делятся на аппараты с неподвижным слоем катализатора (полочные или фильтрующие), в которых контактная масса расположена в 4–5 слоях, и аппараты кипящего слоя. Отвод тепла после прохождения газом каждого слоя катализатора осуществляется путем введения в аппарат холодного газа или воздуха или с помощью встроенных в аппарат или вынесенных отдельно теплообменников (принцип рекуперации).

    Рисунок 7.9 – Конструкции контактных аппаратов: а – контактный узел: 1 – контактный аппарат, б – контактный аппарат кипящего слоя; 2 - теплообменник.

    Совокупность контактного аппарата, теплообменников и газопроводов представляет контактный узел. На рис. 7.9 представлены контактный узел, состоящий из контактного аппарата фильтрующего типа, и выносных теплообменников, и контактный аппарат кипящего слоя.

    К преимуществам контактных аппаратов кипящего слоя относятся:

    • высокий коэффициент теплоотдачи от катализатора в состоянии кипящего слоя к поверхности теплообменника (в 10 раз больше, чем от газа), что позволяет без перегрева вести контактирование печного газа с высоким содержанием оксида серы (IV) и снизить температуру зажигания катализатора;
    • нечувствительность к пыли, вносимой вместе с печным газом.

    7.3.3. Двойное контактирование

    Важнейшей задачей совершенствования сернокислотного производства являются увеличение степени контактирования и снижение выбросов оксида серы (IV) в атмосферу. В обычном процессе повышение степени контактирования выше 0,98 дол. Единицы нецелесообразно, так как связано с резким увеличением количества и числа слоев контактной массы. Однако даже при этой максимальной для обычного процесса степени контактирования выброс оксида серы (IV) может достигать на современных установках 35–60 т/сутки. Помимо значительных потерь продукции это вызывает необходимость в сложных и дорогостоящих очистных сооружениях для нейтрализации отходящих газов.

    Метод двойного двойного контактирования двойной абсорбции (ДКДА) применяют для увеличения конечной степени контактирования и ведут процесс окисления оксида серы (IV) в две стадии. На первой стадии контактирование ведут до степени превращения, не превышающей 0,90–0,92 дол. , после чего из контактированного газа выделяют оксид серы (VI). Затем проводят вторую стадию контактирования до степени превращения оставшегося в газе оксида серы (IV) 0,95 дол. единицы. Конечная степень контактирования определяется в этом случае как

    • где Х 1 – степень контактирования на первой стадии;
    • Х 2 – степень контактирования на второй стадии.

    Метод двойного контактирования позволяет повысить степень контактирования до 0,995 дол. ед. и на несколько порядков снизить выброс оксида серы (IV) в атмосферу. На рис. 7.10 представлена схема двойного контактирования с использованием контактного аппарата фильтрующего типа, применяемая в установках ДК–ДА.

    Рисунок 7.10 – Схема двойного контактирования

    7.4. Абсорбция оксида серы (VI)

    Абсорбция оксида серы (VI) является последней стадией в производстве серной кислоты контактным способом из контактированного газа и превращение его в серную кислоту или олеум. Абсорбция оксида серы (VI) представляет обратимую экзотермическую реакцию и описывается уравнением

    Тепловой эффект реакции зависит от значения n и для n = 1 (образование моногидрата серной кислоты) равен 92 кДж.

    В зависимости от количественного соотношения оксида серы (VI) и воды может быть получен продукт различной концентрации:

    • при n > 1 олеум;
    • при n = 1 моногидрат (100% серная кислота);
    • при n < 1 водный раствор кислоты (разбавленная серная кислота).

    Для процесса абсорбции оксида серы (VI) существенное значение имеет природа абсорбента. Скорость абсорбции описывается уравнением

    • где К – коэффициент абсорбции;
    • F – поверхность раздела фаз «абсорбент–газ»;
    • Dр – движущая сила процесса абсорбции.

    Движущая сила процесса абсорбции

    Так как p* SO 3 задается составом газа, то движущая сила и, следовательно, скорость процесса абсорбции будут тем больше, чем меньше равновесное давление оксида серы (VI) над сорбентом.

    Кроме этого, при высоком равновесном давлении над сорбентом паров воды p* Н2О вследствие взаимодействия молекул воды с молекулами оксида серы (VI) образуются пары серной кислоты, конденсирующиеся с возникновением трудно улавливаемого тумана серной кислоты:

    Таким образом, наилучшей поглощающей способностью будет обладать абсорбент с минимальным равновесным давлением над ним оксида серы (VI) и паров воды. Этому условию в максимальной степени удовлетворяет азеотроп серной кислоты концентрацией 98,3%. Использование серной кислоты более низкой концентрации приводит к интенсивному образованию тумана, а применение 100% кислоты или олеума – к снижению степени абсорбции. На рис. 7.11 представлена зависимость скорости абсорбции оксида серы (VI) от концентрации серной кислоты, используемой в качестве абсорбента.

    Абсорбция оксида серы (VI) сопровождается выделением значительного количества тепла. Поэтому для обеспечения полноты поглощения оксида серы (VI) процесс ведут при охлаждении газа и абсорбента до 80 0 С и используют аппараты с большим абсорбционным объёмом.

    На рис. 7.11 представлена схема абсорбции.

    Рисунок 7.11 – Схема двухстадийного процесса абсорбции:

    1. холодильник газа;
    2. олеумный абсорбер;
    3. моногидратный абсорбер;
    4. сушильная башня;
    5. холодильник жидкого продукта;
    6. сборник олеума;
    7. сборник моногидрата

    Подобная схема абсорбции позволяет получать, кроме контактной серной кислоты концентрацией 92–93%, также олеум различной концентрации.

    7.5. Технологическая схема производства серной кислоты контактным методом

    В настоящее время в производстве серной кислоты и олеума контактным методом наиболее распространенной является технологическая схема с использованием принципа двойного контактирования «ДК–ДА» (двойное контактирование – двойная абсорбция). Часть подобной схемы, за исключением печного отделения и отделения общей очистки печного газа, технологически однотипных для всех схем, представлена на рис. 7.12

    Рисунок 7.12 – Технологическая схема производства серной кислоты из колчедана двойным контактированием ДК–ДА

    1. полая промывная башня;
    2. промывная башня с насадкой;
    3. увлажнительная башня;
    4. электрофильтры;
    5. сушильная башня;
    6. турбогазодувка;
    7. сборник 75% кислоты;
    8. сборник продукционной кислоты;
    9. теплообменники;
    10. контактный аппарат;
    11. олеумный абсорбер;
    12. моногидратныq абсорбер.
    13. моногидратныq абсорбер.
      Потоки продуктов:
      • I – охлажденная 98% кислота;
      • II – продукционная кислота на охлаждение;
      • III – охлажденный олеум или моногидрат;
      • IV – продукционный олеум на охлаждение.

    Производительность установки до 1500 т/сут. по моногидрату. Расходные коэффициенты (на 1 т моногидрата): колчедан 0,82 т, вода 50 м 3 , электроэнергия 82 кВт*ч.

    7.6. Товарные сорта серной кислоты

    Современная промышленность выпускает несколько сортов серной кислоты и олеума, различающихся концентрацией и чистотой (табл.7.4). Чтобы уменьшить возможность кристаллизации продуктов при перевозке и хранении, а также в самом производстве, установлены стандарты на товарные сорта, концентрации которых отвечают эвтектическим составам с наиболее низкими температурами кристаллизации.

    При определении технико–экономических показателей сернокислотного производства расчеты производимой продукции ведутся, обычно, на 100% серную кислоту (моногидрат). Для пересчета массы олеума на массу моногидрата используется формула

    Таблица 7.4 – Товарные сорта серной кислоты и олеума

    Пример решения задачи

    Составить материальный баланс сушильного отделения обжигового газа. Объём обжигового газа V м 3 . Состав обжигового газа (% об): SO2 – a, O2 – b, N2 – 79. Водяных паров в газе 138 м3 или 110,9 кг. Газ разбавляется воздухом до 7,5% об. SO2. Водяные пары поглощаются серной кислотой с массовой долей ω1 = 94%. Кислота разбавляется до массовой доли ω2 = 93,5%. Уходящий из сушильного отделения газ содержит 0,2 г/м3 водяных паров. М SO2 = 64 г/моль, М О2 = 32 г/моль, М N2 =28 г/моль.

    Исходные данные

    V обж.газа = 1000 м 3 ; а – 9,6 % (об.) b – 11,4 % (об.)

    Решение

    Рассчитаем состав сухого обжигового газа:

    V SO 2 = a∙ V обж.газа /100 = 9.6 ∙1000/100 = 276,38 м 3 , или m SO 2 = V SO 2 ∙ М SO 2 /22.4 =789,66м 3 .

    Аналогичным образом рассчитывают объём и массу кислорода и азота, входящих в состав обжигового газа, и данные заносят в таблицу:

    Объем сухого газа после разбавления его воздухом

    Объем сухого воздуха, который нужно добавить к газу

    Принимаем относительную влажность воздуха равной 50% (0,5 долей единицы) и температуру воздуха 23◦С. Этой температуре соответствует давление насыщенного водяного пара Р=2786,4 Па (20,9 мм рт.ст.)

    Объем влаги, вносимой воздухом:

    Состав воздуха, добавленного к газу

    Общая масса влаги, вносимая газом и воздухом mH2O,общ. = 110,90 + 9,03 = 119,03 кг

    Масса влаги в газе, уходящем из сушильного отделения

    Масса влаги, поглощаемой кислотой

    mH2O,погл. = mH2O,общ. – mH2O,ух.= 119,93 – 0,74 = 119,19 кг

    Массу кислоты х, необходимой для осушки газа, вычисляем по уравнению баланса моногидрата в поступающей и уходящей кислоте:

    х ω1 H2SO4 = (х + mH2Oпогл.) = ω2 H2SO4

    0,94х = (х+119,19) 0,935

    0,94х – 0,935х = 111,44

    Объем кислоты (S = 1800 кг/м3)

    Исходя из практических данных принимаем, что 0,3% (об.) SO2 извлекается из газа, растворяясь в H2SO4. Масса растворившегося в кислоте оксида серы (IV) SO2 составляет

    mSO2,раств. = VSO2 0,003 = 276,38 0.003 = 0,83 м3 или 2,37 кг

    Выходящий из сушильного отделения газ содержит

    276,38 – 0,83 = 275,55

    2274,1 + 636,8 = 2911,21

    328,21 + 169,27 = 497,48

    Масса выходящей из сушильного отделения кислоты

    mH2SO4 вых. = х + mH2O погл.+ mSO2 раств. = 22288 + 119,19 + 2,37 = 22409,56

    Массовая доля H2SO4 в этой кислоте

    Материальный баланс процесса осушки обжигового газа

    27547,29

    27547,30

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕПУБЛИКИ БЕЛАРУСЬ

    БЕЛОРУСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

    Кафедра технологии

    Индивидуальная работа на тему:

    «Производство серной кислоты контактным способом».

    Выполнил студент I курса ФБД: Клименок М. А.

    Проверил преподаватель: Тарасевич В. А.

    Минск 2002г.



    · Реферат

    · Описание контактного способа производства серной кислоты

    · Принципиальная технологическая схема производства серной кислоты контактным способом

    · Динамика трудозатрат при развитии технологического процесса

    · Расчёт уровня технологии, тех вооруженности и производительности живого труда

    · Заключение

    · Литература и источники



    Данная работа состоит из 12 страниц.

    Ключевые слова: Серная кислота, Контактный способ, Реакция, Технология производства, Динамика трудозатрат, Технологический процесс.

    В данной работе изучена и описана технология производства серной кислоты контактным способом. Приведены иллюстрации, схемы, графики, и таблицы, отражающие суть технологического процесса. Выделены важнейшие тенденции развития производства серной кислоты контактным способом

    Проведён анализ динамики трудозатрат живого и прошлого труда а также динамика трудозатрат при развитии технологического процесса. Рассчитан уровень технологии, тех вооруженности и производительности живого труда. Сделаны соответствующие выводы и заключения.

    Описание контактного способа производства серной кислоты

    Контактным способом производится большое количество сортов серной кислоты, в том числе олеум, содержащий 20% свободной SO3, купоросное масло (92,5% Н 2 SO 4 и 7,5% Н 2 О), аккумуляторная кислота, примерно такой же концентрации, как и купоросное масло, но более чистая.

    Контактный способ производства серной кислоты включает три стадии: очистку газа от вредных для катализатора примесей; контактное окисление сернистого ангидрида в серный; абсорбцию серного ангидрида серной кислотой. Главной стадией является контактное окисление SO 2 в SO 3 ; по названию этой операции именуется и весь способ.

    Контактное окисление сернистого ангидрида является типичным примером гетерогенного окислительного экзотермического катализа. Это один из наиболее изученных каталитических синтезов.

    Равновесие обратимой реакции
    2SO 2 + O 2 >< 2 SO 3 + 2 x 96,7 кдж (500 оС) (а)
    в соответствии с принципом Ле-Шателье сдвигается в сторону образования SO 3 при понижении температуры и повышении давления; соответственно увеличивается равновесная степень превращения SO 2 в SO 3

    Следует отметить, что повышение давления естественно увеличивает и скорость реакции (а). Однако повышенное давление в этом процессе применять нерационально, так как кроме реагирующих газов пришлось бы сжимать балластный азот, составляющий обычно 80 % от всей смеси и поэтому в производственном цикле активно используют катализаторы.

    Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Окись железа дешевая, но при обычном составе газа - 7% SO2 и 11% О2 она проявляет каталитическую активность только при температурах выше 625 оС, т.е. когда хр 70%, и поэтому применялась лишь для начального окисления SO2 до достижения хр 50-60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина; он оказался наиболее рациональным и только он применяется в производстве серной кислоты. Ванадиевая контактная масса содержит в среднем 7% V2O5; активаторами являются окислы щелочных металлов, обычно применяют активатор К2О; носителем служат пористые алюмосиликаты. В настоящий момент катализатор применятся в виде соединения SiO2, K и/или Cs, V в различных пропорциях. Такое соединение оказалось наиболее устойчивым к кислоте и наиболее стабильным. Во всем мире его более корректное названия «ванадий - содержащий». Такой катализатор разработан специально для работы с невысокими температурами, что приводит в меньшим выбросам в атмосферу. Кроме того - такой катализ дешевле нежели калий/ванадиевый. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца (Рис. 1).

    При условиях катализа окись калия превращается в K2S2O7, а контактная масса в общем представляет собой пористый носитель, поверхность и поры которого смочены пленкой раствора пятиокиси ванадия в жидком пиросульфате калия.
    Ванадиевая контактная масса эксплуатируется при температурах от 400 до 600 оС. При увеличении температуры выше 600 оС начинается необратимое снижение активности катализатора вследствие спекания компонентов с образованием неактивных соединений, не растворимых в пиросульфате калия. При понижении температуры активность катализатора резко снижается вследствие превращения пятивалентного ванадия в четырехвалентный с образованием малоактивного ванадила VOSO4.

    Процесс катализа слагается из стадий: 1) диффузии реагирующих компонентов из ядер газового потока к гранулам, а затем в порах контактной массы; 2) сорбции кислорода катализатором (передача электронов от катализатора к атомам кислорода); 3) сорбции молекул SO2 с образованием комплекса SO2 * О * катализатор; 4) перегруппировки электронов с образованием комплекса SO2 * катализатор; 5) десорбции SO3 из пор контактной массы и от поверхности зерен.

    При крупных гранулах контактной массы суммарная скорость процесса определяется диффузией реагентов (1-я и 6-я стадии). Обычно стремятся получить гранулы не более 5 мм в поперечнике; при этом процесс идет на первых стадиях окисления в диффузионной, а на последних (при х 80%) в кинетической области.

    Вследствие разрушения и слеживания гранул, загрязнения слоя, отравления катализатора соединениями мышьяка и температурной порчи его при случайных нарушениях режима ванадиевая контактная масса заменяется в среднем через 4 года. Если же нарушена очистка газа, получаемая обжигом колчедана, то работа контактного аппарата нарушается вследствие отравления первого слоя контактной массы через несколько суток. Для сохранения активности катализатора применяется тонкая очистка газа мокрым способом.


    Принципиальная технологическая схема производства серной кислоты контактным способом

    Лучшим сырьем для производства сернистого газа служит сера, которая выплавляется из природных пород, содержащих серу, а также получается как побочный продукт при производстве меди, при очистке газов и т.п. Сера плавится при температуре 113 градусов С, легко воспламеняется и сгорает в простых по устройству печах (Рис. 2). Получается газ высокой концентрации, с маленьким содержанием вредных примесей.

    Сжигание серы происходит по реакции S + O 2 > SO 2 + 296 кДж Фактически сера перед горением плавится и испаряется (т. кип. ~444 о С) и сгорает в газовой фазе. Таким образом, сам процесс горения гомогенный.

    Компрессор и камера сгорания

    Недогоревшая сера
    Воздух для горения и догорания серы
    Жидкая сера
    Сжатый воздух
    Продукт – обжиговый газ

    технологическая схема производства серной кислоты

    1 - 1-я промывная башня; 2 - 2-я промывная башня с насадкой; 3 - мокрый электрофильтр; 4 - сушильная башня с насадкой; 5 - турбокомпресор; 6 - трубчатый теплообменник; 7 - контактный аппарат; 8 - трубчатый холодильник газа; 9 и 10 - абсорбционные башни с насадкой; 11 - центробежные насосы; 12 - сборники кислоты; 13 - холодильники кислоты

    Обжиговый газ после грубой очистки от пыли в огарковых электрофильтрах при температуре около 300 оС поступает в полую промывную башню (Рис. 3: 1,2), где разбрызгивается холодная серная кислота (75%-ная H 2 SO 4). При охлаждении газа имеющиеся в нем серный ангидрид и пары воды конденсируются в виде мельчайших капелек. В этих капельках растворяется окись мышьяка. Образуется мышьяковокислотный туман, который частично улавливается в первой башне и во второй башне с керамиковой насадкой. Одновременно улавливаются остатки пыли, селен и другие примеси. Образуется грязная серная кислота (до 8% от общей выработки), которую выдают как нестандартную продукцию. Окончательная очистка газа от трудноуловимого мышьяковокислотного тумана производится в мокрых фильтрах (Рис. 3: 3), которые устанавливают последовательно (два или три). Принцип действия мокрых фильтров таков же, как и сухих. Капельки туммана осаждаются на трубчатых осадительных электродах, изготовленных из свинца или пластмассы «АТМ», и стекают вниз. Очистка газа завершается осушкой его от паров воды купоросным маслом в башне с насадкой (Рис. 3: 4). Обычно устанавливаются две сушильные башни. Башни, газоходы и сборники кислоты в отделении очистки обычно устанавливают стальные, футерованные кислотоупорным кирпичом или диабазовой плиткой. Сухой сернистый газ и серный ангидрид не агрессивны, поэтому всю последующую аппаратуру вплоть до моногидратного абсорбера можно монтировать из обычной углеродистой стали без защиты от коррозии.

    Большое количество аппаратуры создает значительное сопротивление потоку газа (до 2 м вод.ст.), поэтому для транспортировки газа устанавливается турбокомпрессор (Рис. 3: 5). Компрессор, просасывая газ из печей через всю аппаратуру, нагнетает его в контактный узел.

    Контактный узел (Рис. 3: 6,7,8) состоит из контактного аппарата, кожухотрубного теплообменника и не показанного на схеме (Рис. 4). огневого пускового подогревателя газа. В теплообменнике пускового подогревателя газ нагревается перед поступлением в аппарат при пуске или при падении температуры в аппарате ниже нормы.
    Обычно применяются полочные контактные аппараты. Такой аппарат имеет цилиндрический корпус диаметром от 3 до 10 и высотой 10-20 м. Внутри корпуса установлены четыре-пять решеток со слоем гранул контактной массы на каждой из них. Между слоями контактной массы установлены промежуточные трубчатые или коробчатые теплообменники. На схеме представлен четырехслойный контактный аппарат, хотя чаще применяются пятислойные аппараты, но принцип их дествия полностью аналогичен, разница лишь в еще одном слое ктализатора. Свежий газ подогревается за счет тепла прореагировавшего горячего газа сначала во внешнем теплообменнике, потом он частично или полностью проходит для подогрева последовательно три-четыре внутренних теплообменника, при 440-450 о С поступает в первый слой контактной массы. Эта температура регулируется открыванием задвижек. Главное назначение внутренних теплообменников - охлаждение частично окисленного и разогретого в слое катализатора газа, таким образом, чтобы режим ступенчато приближался к кривой оптимальных температур.

    Полочные контактные аппараты - один из наиболее распространненых типов контактных аппаратов. Принцип их действия состоит в том, что подогрев и охлаждение газа между слоями катализатора, лежащими на полках, производится в самом контактном аппарате с использованием различных теплоносителей или способов охлаждения.В аппаратах такого типа высота каждого нижележащего слоя катализатора выше, чем расположенного над ним, т.е. увеличивается по ходу газа, а высота теплообменников уменьшается, так как по мере возрастания общей степени превращения скорость реакции снижается и соответственно уменьшается количество выделившегося тепла. В межтрубном пространстве теплообменников последовательно снизу вверх проходит свежий газ, охлаждая продукты реакции и нагреваясь до тепмпературы начала реакции

    Производительность контактных аппаратов в пересчете на H 2 SO 4 в зависимости от их размеров составляет от 50 до 500 т в сутки H 2 SO 4 . Разработаны конструкции контактных аппаратов мощностью 1000 и 2000 т в сутки. В аппарат загружают 200-300 л контактной массы на 1 т суточной выработки. Трубчатые контактные аппараты применяются для окисления SO 2 реже, чем полочные. Для окисления сернистого газа повышенной концентрации рационально применять контактные аппараты с кипящими слоями катализатора.

    Абсорбцию серного ангидрида по реакции SO 3 +H 2 O = H 2 SO 4 +9200 Дж обычно проводят в башнях с насадкой (Рис. 3: 9,10), так как барботажные или пенные абсорберы при большой интенсивности работы обладают повышенным гидравлическим сопротивлением. Если парциальное давление водяных паров над поглощающей кислотой значительно, то SO 3 соединяется с H 2 O в газовой фазе и образует мельчайшие капельки трудноуловимого сернокислотного тумана. Поэтому абсорбцию ведут концентрированными кислотами. Наилучшей по абсорбционной способности является кислота, содержащая 98,3% Н 2 SO 4 и обладающая ничтожно малой упругостью как водяного пара, так и SO 3 . Однако за один цикл в башне невозможно закрепление кислоты с 98,3% до стандартного олеума, содержащего 18,5-20% свободного серного ангидрида. Ввиду большого теплового эффекта абсорбции при адиабатическом процессе в башне кислота разогревается и абсорбция прекращается. Поэтому для получения олеума абсорбцию ведут в двух последовательно установленных башнях с насадкой: первая из них орошается олеумом, а вторая - 98,3%-ной серной кислотой. Для улучшения абсорбции охлаждают как газ, так и кислоту, поступающую в абсорбер, при этом увеличивается движущая сила процесса.

    Во всех башнях контактного производства, включая и абсорберы, количество орошающей кислоты во много раз больше, чем нужно для поглощения компонентов газа (Н 2 О, SO 3) и определяется тепловым балансом. Для охлаждения циркулирующих кислот устанавливаются обычно оросительные холодильники, в трубах которых, орошаемых снаружи холодной водой, протекает охлаждаемая кислота.

    Производство серной кислоты значительно упрощается при переработке газа, получаемого сжиганием предварительно расплавленной и профильтрованной природной серы, почти не содержащей мышьяка. В этом случае чистую серу сжигают в воздухе, который предварительно высушен серной кислотой в башне с насадкой. Получается газ 9% SO2 и 12% О2 при температуре 1000 оС, который сначала направляется под паровой котел, а затем без очистки в контактный аппарат. Интенсивность работы аппарата больше, чем на колчеданном газе, вследствие повышенной концентрации SO2 и О2. В аппарате нет теплообменников, так как температура газов снижается добавкой холодного воздуха между слоями. Абсорбция SO3 производится так же, как и в технологической схеме.

    Важнейшие тенденции развития производства серной кислоты контактным способом:

    1) интенсификация процессов проведением их во взвешенном слое, применением кислорода, производством и переработкой концентрированного газа, применением активных катализаторов;

    2) упрощение способов очистки газа от пыли и контактных ядов (более короткая технологическая схема);

    3) увеличение мощности аппаратуры;

    4) комплексная автоматизация производства;

    5) снижение расходных коэффициентов по сырью и использование в качестве сырья серосодержащих отходов различных производств;

    6) обезвреживание отходящих газов.

    Динамика трудозатрат при развитии технологического процесса

    В общем виде весь вышеизложенный материал можно изобразить следующим образом:

    Известно что данный технологический процесс и динамику трудозатрат харрактеризуют следующие формулы:

    Тж = ---------------------- Тп = 0,004 * t 2 +0,3 Тс = Тж + Тп

    Взаимосвязь между этими формулами выглядит так:


    Тп = 0,004 * - 75 +0,3 и Тж = 21 * Тп-0,3 +1575

    Основываясь на вышеизложенных формулах проведём расчёты и сведём их в общую таблицу (Таб. 1):

    (Таб. 1): Динамика трудозатрат на производстве серной кислоты на 15 лет

    t (Время, года) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Затраты живого труда 0,78 0,75 0,71 0,654 0,595 0,54 0,48 0,43 0,38 0,34 0,3 0,27 0,24 0,22 0,198
    Затраты прошлого труда 0,3 0,32 0,34 0,364 0,4 0,44 0,496 0,56 0,62 0,7 0,78 0,88 0,98 1,08 1,2
    Совокупные затраты 1,09 1,07 1,04 1,018 0,995 0,98 0,976 0,98 1,01 1,04 1,09 1,15 1,22 1,3 1,398

    На основании таблицы построим графики зависимостей Тж, Тп, Тс от времени (Рис. 7) и зависимости Тж от Тп (Рис. 6) и Тп от Тж (Рис. 8).

    Из данного графика видно, что данный технологический процесс является ограниченным в своём развитии.

    Экономический предел накопления прошлого труда наступит через семь лет.

    Из графиков 7 и 8 видно что вид технологического процесса является трудосберегающим.

    Расчёт уровня технологии, тех вооруженности и производительности живого труда.

    Уровень технологии рассчитывается по формуле:

    Утех = 1/Тж * 1/ ТП

    Производительность живого труда:


    L = У тех * В

    Техническая вооружённость рассчитывается:

    В = Тп / Тж

    Относительный уровень технологии:

    Уотнос = Утех/ L

    Проведём расчёты используя приведёные выше формулы и данные занесём в таблицу (Таб. 2):

    T Время (года) 1 2 3 4 5 6 7 8 9 10 11 12 13
    Затраты живого труда 0,78 0,75 0,71 0,654 0,595 0,54 0,48 0,43 0,38 0,34 0,3 0,27 0,24
    Затраты прошлого труда 0,3 0,32 0,34 0,364 0,4 0,44 0,496 0,56 0,62 0,7 0,78 0,88 0,98
    Совокупные затраты 1,09 1,07 1,04 1,018 0,995 0,98 0,976 0,98 1,01 1,04 1,09 1,15 1,22
    Уровень технологии 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2
    Тех. вооруженность 0,39 0,42 0,47 0,556 0,672 0,83 1,033 1,3 1,64 2,058 2,58 3,22 4
    Производительность Тж 1,28 1,33 1,41 1,529 1,68 1,86 2,083 2,34 2,62 2,94 3,29 3,68 4,1
    Относ уровень технологии 3,29 3,16 2,98 2,747 2,5 2,25 2,016 1,8 1,6 1,429 1,28 1,14 1,02

    Из данной таблицы видно что рационалистическое развитие целесообразно только в течении семи лет поскольку в этот период времени относительный уровень технологии больше производительности живого труда.


    Заключение

    В данной работе изучена и описана технология производства серной кислоты контактным способом, проведён анализ динамики трудозатрат живого и прошлого труда а также динамика трудозатрат при развитии технологического процесса. На основании проделанной работы получены следующие выводы: Развитие тех процесса ограничено, экономический предел накопления прошлого труда равен семи годам, данный технологический процесс является трудосберегающим и рационалистическое развитие целесообразно в течении семи лет.


    Литература и источники:


    1. ПРОИЗВОДСТВО СЕРНОЙ КИСЛОТЫ /Бараненко Д. http://service.sch239.spb.ru:8101/infoteka/root/chemistry/room1/baran/chem.htm

    2. Технология важнейших отраслей промышленности: Учеб. Для эк. Спец. Вузов / А.М. Гинберг, Б.А. Хохлов. – М.: Высшая школа, 1985.





    Стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты. 1. Железный колчедан. Природный железный колчедан представляет сложную породу, состоящую из сульфида железа РеБ2, сульфидов других металлов (меди, цинка, свинца и др.), ...


    Еще не всегда осуществима. В то же время отходящие газы – наиболее дешевое сырье, низки оптовые цены и на колчедан, наиболее же дорогостоящим сырьем является сера. Следовательно, для того чтобы производство серной кислоты из серы было экономически целесообразно, должна быть разработана схема, в которой стоимость ее переработки будет существенно ниже стоимости переработки колчедана или отходящих...

    Для автоматического регулирования необходимо максимально знать требования, предъявляемые различным химико-технологическим процессом. 1.Основная часть 1.1 Технологический процесс получение серного ангидрида при получении серной кислоты. Производство серной кислоты контактным способом состоит из следующих действий: 1. Разгрузка, складирование и подготовка сырья...

    Образуется азотная кислота: NO(HSO4) + H2O®H2SO4 + HNO2 Она - то и окисляет SO2 по уравнению: SO2 + 2HNO2®H2SO4 + 2NO В нижней части башен 1 и 2 накапливается 75% - ная серная кислота, естественно, в большем количестве, чем её было затрачено на приготовление нитрозы (ведь добавляется «новорождённая» серная кислота). Окись азота NO возвращается снова на окисление. Поскольку некоторое количество...