Таблица 15.5

Кинематическая вязкость некоторых жидкостей при 20° (Hadgman C.D., 1965)

Вода препятствует продвижению пловца. В гидродинамике для расчета движения жидкости используют число Рейнольдса. Число Рейнольдса - это безразмерная величина , где - плотность и вязкость жидкости, и - скорость ее движения относительно тела и а - некоторая длина.

Правило, согласно которому строение потока около тел одной и той же формы одинаково, если одинаково число Рейнольдса, неприменимо в тех случаях, когда речь идет о поведении жидкости около ее свободной поверхности.

Число Рейнольдса удобно выражать как величина, называемая кинематической вязкостью.

Во многих случаях трудно измерять силы, которые действуют на тело, движущееся в жидкости. В этой связи для экспериментов используют аэродинамические и гидродинамические трубы.

Лобовое сопротивление. При движении какого-нибудь тела в жидкости, на него действует сила, задерживающая его движение. Эту силу называют лобовым сопротивлением. Величина ее зависит от природы жидкости и от размеров, формы и скорости движущегося тела.

Как показали эксперименты в аэродинамических трубах, лобовое сопротивление тела или различных тел одной и той же формы можно определить по формуле где Д - лобовое сопротивление, р - плотность жидкости, и - скорость движения жидкости относительно тела, А - характеристическая площадь и С д - величина, называемая коэффициентом лобового сопротивления, которая зависит от формы тела и от числа Рейнольдса.

К сожалению, не существует единого определения А, которое было бы удобным при любой форме тела. Используются следующие площади:

1) лобовая площадь, т. е. площадь проекции тела на плоскость, перпендикулярно направлению потока. В случае цилиндра, имеющего высоту h и радиус г, лобовая площадь будет равна πr 2 , если ось цилиндра параллельна потоку, и 2rh, если она перпендикулярна ему;

2) площадь наибольшей проекции, т. е. проекции по тому направлению, по которому площадь ее будет наибольшей; эту величину используют, когда имеют дело с обтеканием профиля крыла; по сравнению с лобовой площадью она имеет то преимущество, что не изменяется при наклоне профиля;

3) суммарная поверхность тела. Следует помнить, что в случае тонкой пластинки это будет суммарная площадь обеих ее сторон.

Если есть сомнения, то важно указать, какая именно из этих площадей была использована при вычислении коэффициента С

На рис. 15.34 приведены кривые зависимости коэффициента лобового сопротивления С д от числа Рейнольдса для тел различной формы.

Все коэффициенты были вычислены на основе лобовой площади.

Число Рейнольдса для всех тел, кроме диска, определялось обычным способом по длине, измеренной в направлении потока; для диска же его определяли по диаметру, хотя он расположен перпендикулярно потоку.

В связи с отсутствием работы по лобовому сопротивлению у пловцов, мы приводим данные Т.О. Lang, K.S. Norris (1966), R. Alexander (1968) полученные при изучении дельфинов. Было найдено, что при коротких «бросках» дельфин может развивать скорость до 830 см/с (около 16 узлов), а со скоростью 610 см/с (около 12 узлов) способен плыть примерно в течение 1 мин. Дельфин (Turbiopsgilli) имел длину 191 см, так что число Рейнольдса при первой из этих скоростей составляло 830·191 /0,01 = 1,6·10 7 . Профиль дельфина хорошо обтекаем. Кожа очень гладкая и лишена волос. Все указывает на малую величину лобового сопротивления.

Рис. 15.34. Зависимость коэффициента лобового сопротивления от числа Рейнольдса для диска, расположенного перпендикулярно направлению своего движения; для удлиненного цилиндра, движущегося перпендикулярно своей оси; для шара и для тела обтекаемой формы, движущегося вдоль своей оси (по Р. Александер, 1970)

Попробуем оценить величину лобового сопротивления для дельфина, плывущего со скоростью 830 см/с и мощность, развиваемую его мышцами. Лобовая площадь у дельфина длиной 191 см, вероятно, составляет около 1100 см 2 . Коэффициенты лобового сопротивления для обтекаемых тел при числе Рейнольдса около 1,6-10 7 близки к 0,055. Подставив эти величины в уравнение

Мы найдем, что лобовое сопротивление у нашего дельфина составляет примерно 1 /2 (830) 2 ·1100·0,055 = 2,0-10 7 дин. Мощность равна сопротивлению, умноженному на скорость, т. е. в данном случае 830·2,0·10 7 эрг/с, или 1660 Вт. Однако от мышц требуется большая мощность, так как КПД дельфина при плавании не может достигать 100%; поэтому она едва ли могла быть меньше 2000 Вт. Дельфин весит 89 кг, из которых на долю участвующих в плавании мышц приходится, вероятно, около 15 кг. Таким образом, мощность мышц должна составлять примерно 130 Вт/кг. Это в 3 раза больше максимальной мощности, которую могут развивать мышцы человека при работе на велоэргометре.

Лобовое сопротивление - не единственная гидродинамическая сила, действующая на тела, которые движутся в жидкости или находятся в потоке. По определению оно имеет то же направление, что и скорость движения жидкости относительно тела. Когда симметричное тело движется вдоль своей оси симметрии, действующая на него гидродинамическая сила направлена прямо и представляет собой лобовое сопротивление. Но когда симметричное тело движется под некоторым углом к оси симметрии, гидродинамическая сила действует под углом к его пути. Ее можно разложить на две составляющие, одна из которых направлена назад и представляет собой лобовое сопротивление, а другая действует под прямым углом к первой.

Энергетика пловца. Когда человек плывет, он сообщает некоторое количество энергии воде, чтобы продвинуться (проплыть) в ней. Это создает волну, которая в конечном счете потеряет всю сообщенную ей энергию в виде тепла, и поверхность воды снова станет спокойной. Затраченная таким образом при плавании энергия представляет собой совершенную работу плюс тепло, потерянное телом пловца.

Для определения кинематической вязкости вискозиметр подбирают таким образом, чтобы время течения нефтепродукта было не менее 200 с. Затем его тщательно промывают и высушивают. Пробу испытуемого продукта профильтровывают через бумажный фильтр. Вязкие продукты перед фильтрованием подогревают до 50–100оС. При наличии в продукте воды его осушают сульфатом натрия или крупнокристаллической поваренной солью с последующим фильтрованием. В термостатирующем устройстве устанавливают требуемую температуру. Точность поддержания выбранной температуры имеет большое значение, поэтому термометр термостата должен быть установлен так, чтобы его резервуар оказался примерно на уровне середины капилляра вискозиметра с одновременным погружением всей шкалы. В противном случае вводится поправка на выступающий столбик ртути по формуле:

^T = Bh(T1 – T2)

  • B – коэффициент температурного расширения рабочей жидкости термометра:
    • для ртутного термометра – 0,00016
    • для спиртового – 0,001
  • h – высота выступающего столбика рабочей жидкости термометра, выраженная в делениях шкалы термометра
  • T1 – заданная температура в термостате, оС
  • T2 – температура окружающего воздуха вблизи середины выступающего столбика, оС.

Определение времени истечения повторяют несколько раз. В соответствии с ГОСТ 33-82 число измерений устанавливают в зависимости от времени истечения: пять измерений – при времени истечения от 200 до 300 с; четыре – от 300 до 600 с и три – при времени истечения свыше 600 с. При проведении отсчетов необходимо следить за постоянством температуры и отсутствием пузырьков воздуха.
Для подсчета вязкости определяют среднее арифметическое значение времени истечения. При этом учитывают только те отсчеты, которые отличаются не более чем на ± 0,3 % при точных и на ± 0,5 % при технических измерениях от среднего арифметического.

Вода - это жидкость, без которой невозможна жизнь на земле. Но многие не знают, что она имеет много свойств, несколько видов и особенностей. Одна из них - вязкость, которая используется не только в физике, но и в других сферах знаний и жизни человека. Это такие отрасли, как медицина, косметология, кулинария, автомобильная промышленность. Еще один вид этой характеристики - условная вязкость - активно используется в нефтедобывающей промышленности, химии и физике.

Что за явление - динамическая вязкость воды?

Растягиваясь, жидкое вещество претерпевает сопротивление. Аналогично происходит при сдвиге. Такое явление зависит от той скорости, которую развивают частицы жидкости при движении различных пластов воды. При воздействии пласта, передвигающегося быстрее, на пласт, движущийся более медленно, на первый план выступает ускоряющая сила. При обратном явлении действует тормозящая. Обе силы действуют в направлении к поверхностям пластов воды по касательной.

Отличительной особенностью является вязкость воды, сопротивляющаяся перемещению частиц в отношении друг друга. Она подразделяется на объемную и тангенциальную. Объёмная сопротивляется растяжению, она начинает действовать при распространении в воде различных звуковых волн. Тангенциальная вязкость способна оказывать сопротивление сдвигающему усилию.

Характерным свойством воды является текучесть, с которой мы сталкиваемся постоянно. Вязкость жидкости обратно пропорциональна ее текучести. Между отдельными молекулами возникает сила трения, и чтобы сдвинуть их с места, необходимо приложить усилие. Такое явление получило в науке название "динамическая вязкость воды", которую можно увеличить, если в воде растворить какие-либо вещества. Это могут быть различные соли. Динамическую вязкость воды еще называют абсолютной, ее можно узнать с помощью произведения плотности жидкости на ее кинематическое сопротивление.

Такая пониженная текучесть потока, где линейная скорость под воздействием давления сдвига в 1 ньютон на метр квадратный имеет градиент один метр в секунду на одном метре расстояния, перпендикулярного к плоскости сдвига, является единицей измерения абсолютной (динамической) вязкости. Ее измеряют при помощи коэффициента динамической вязкости (μ, η). Например, в морской воде, где присутствуют неорганические соединения, сопротивление воды намного выше, чем у пресной. Это можно почувствовать, даже плавая в ней: если сравнить воду Азовского и Средиземного моря, то во втором варианте человек быстрее научится плавать, так как там вода более соленая.

Что представляет собой кинематическая вязкость воды?

В физике известно два вида жидкости - ньютоновская и неньютоновская. Течение первого вида подлежит описанию согласно законам вязкого трения Ньютона. При этом, соответственно, меняется название коэффициента пропорциональности. Кинематическая вязкость воды при 20 градусах по Цельсию составляет 1,006*10 6 м 2 /с.

Существуют специализированные таблицы со значениями кинематического сопротивления жидкости. Они изменяются при разных показателях температуры при атмосферном давлении 760 мм.рт.ст. Значения, в которых выражена вязкость воды, представлены в них в диапазоне температуры от 0 до 350 °С. Если нагреть эту жидкость больше 100 °С, ее кинематическое сопротивление дается на линии насыщения. Эти значения важны при различных температурах. Без них не обойтись при вычислении величины числа Рейнольдса, которое соответствует определенному режиму течения жидкости или газа.

При сравнительном анализе разных жидкостей, подчиненных закону Ньютона, например, крови или масел, доказано, что вода имеет меньшую вязкость. Она обладает большими показателями сопротивления в сравнении с органическими жидкостями.

Уравнение кинематической вязкости воды

Мера кинематического сопротивления жидкости - это коэффициент кинематической вязкости воды. Его, как и любую физическую величину, также можно вычислить. Он выражен отношением динамической вязкости к плотности:

ν = μ/ρ, где

  • μ — динамическая вязкость в Н*с/м 2 ;
  • ρ — плотность в кг/м 3 ;
  • ν — кинематическое сопротивление в м 2 /c.

Естественно то, что вязкость меняется, как и агрегатные состояния вещества. Такие научные данные используются в авиа- и судостроении и некоторых других отраслях промышленности.

Что происходит с водой при повышении температуры?

Затрудненная текучесть жидкости меняется с увеличением или уменьшением температуры, то есть коэффициент кинематической вязкости воды и динамический показатель не являются стабильными. Следовательно, коэффициенты сопротивления соленой и пресной воды разные.

Так как все значения этих коэффициентов невозможно запомнить, есть специализированные таблицы, где определена вязкость воды при температуре различных уровней. Данными пользуются в теории и на практике.

Как определить вязкость жидкости?

Вискозиметр специализируется на измерении этой характеристики воды с помощью таких методов:

  • метод падающего шарика;
  • истечение жидкости через капилляр;
  • определение сопротивления с помощью ротационных вискозиметров.

Определяя коэффициент вязкости воды, на практике больше используют относительные методики, а не абсолютные, что позволяет пренебречь в расчетах константами приборов. Измерения сначала выполняют для стандартной жидкости, а потом для исследуемой.

От чего зависит вязкость?

Эта характеристика зависит от природы вещества. Если по форме различные частицы жидкости отличаются от сферической, при этом изменяя коэффициент вязкости, то сопротивление такого вещества значительно возрастает и уже не вычисляется согласно уравнению Ньютона. Палочкообразная, листочкообразная форма молекул растворов встречается в разнообразных гелях. Их сопротивление возрастает в связи с тем, что их частицы-мицеллы образуют сетчатую структуру-каркас, внутри которого находится жидкость.

Меняет значение и кинематическая вязкость воды, нагреваясь и охлаждаясь. При повышении температуры она становится меньше. Другими словами, вода при нагревании становится менее сопротивляемой, а при максимальном охлаждении проявляется высокая вязкость воды.

Вязкостью называется способность жидкостей оказывать сопротивление усилиям, касательным к поверхности выделенного объёма, т. е. усилиям сдвига.

Пусть жидкость течёт вдоль плоской стенки (рисунок 1) слоями. Вследствие торможения со стороны стенки слои жидкости будут двигаться с разными скоростями, значения которых возрастают по мере удаления от стенки.

Рассмотрим два слоя, движущиеся на расстоянии
друг от друга. Ввиду разности скоростей, слой B сдвигается относительно слоя A на величину
за единицу времени. Величина
абсолютный сдвиг слоя B по слою A, а– градиент скорости (относительный сдвиг или скорость деформации). Касательное напряжение, поя

Рисунок - 1

вляющееся при этом движении (сила трения, приходящаяся на единицу площади) обозначают . Зависимость между касательным напряжением и скоростью деформации записывают по аналогии с явлением сдвига в твёрдых телах в виде

(10)

или если слои находятся бесконечно близко друг к другу, то получают закон вязкостного трения Ньютона

(11)

Величина , характеризующая сопротивляемость жидкости касательному сдвигу, называется динамическим коэффициентом вязкости. В зависимости от выбора направления отсчета расстояний по нормали (от стенки рассматриваемой трубы Илии ее оси) градиент скорости может быть положительным или отрицательным. Знакв формуле (11) принимается таким, чтобы касательное напряжение было положительным.

Сила внутреннего трения в жидкости

(12)

т. е. она прямо пропорциональна динамическому коэффициенту вязкости, площади трущихся слоёв
и градиенту скорости.

В системе СИ динамический коэффициент вязкости имеет размерность . В системе СГС за единицу динамического коэффициента вязкости принимаютпуаз (Пз). Размерностьпуаза
Следовательно,
или

При расчётах наиболее часто применяюткинематический коэффициент вязкости,

. (13)

Название «кинематический» этот коэффициент получил в связи с тем, что в его размерность входят единицы измерения только кинематических параметров и не входят единицы силы

В системе СИ кинематический коэффициент вязкости измеряется в (м 2 /с), в системе СГС – см 2 /с илистокс (Ст). Величину, в 100 раз меньшуюстокса , называютсантистоксом.

В практике, наряду с упомянутыми единицами измерения вязкости жидкости, используют условный градус Энглера (0 Е), определяемый одним из приборов для измерения вязкости – вискозиметром Энглера.

Под условным градусом Энглера понимают отношение времени истечения
м 3 (200 см 3) испытуемой жидкости, при данной температуре из латунного цилиндрического сосуда с коническим дном через калиброванное отверстие диаметром 2,8 мм, к времени истечения из этого же сосуда
м 3 дистиллированной воды при температуре 20 0 С.

По известному значению вязкости в условных градусах Энглера , кинематический коэффициент вязкости,, определяют по формуле

. (14)

Вязкость жидкостей в значительной степени зависит от температуры. При этом вязкость капельных жидкостей с увеличением температуры уменьшается (таблица 2), а вязкость газов возрастает. Это объясняется тем, что природа вязкости капельных жидкостей и газов различна. В газах средняя скорость теплового движения и длина свободного пробега молекул возрастает с повышением температуры, что приводит к увеличению вязкости. В капельных жидкостях молекулы могут лишь колебаться относительно среднего положения. Cростом температуры скорости колебательных движений молекул увеличиваются. Это облегчает возможность преодоления удерживающих их связей, и жидкость становится более подвижной и менее вязкой.

Таблица 2 - Коэффициент кинематической вязкости воды при различных температурах

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

ν , см 2 /с

Кинематический коэффициент вязкости капельных жидкостей при давлениях
слабо зависит от давления. В таблице 3 приведены значения коэффициента кинематической вязкости для некоторых жидкостей.

Таблица 3 – Коэффициент кинематической вязкости для некоторых жидкостей

Жидкость

ν , см 2 /с

Жидкость

ν , см 2 /с

Цельное молоко

Безводный

глицерин

Легкая нефть

Тяжелая нефть

Масло АМГ-10

Кинематический коэффициент вязкости газов при увеличении давления уменьшается.

Вода H 2 O представляет собой ньютоновскую жидкость и ее течение описывается законом вязкого трения Ньютона, в уравнении которого коэффициент пропорциональности называется коэффициентом вязкости, или просто вязкостью.

Вязкость воды зависит от температуры. Кинематическая вязкость воды равна 1,006·10 -6 м 2 /с при температуре 20°С.

В таблице представлены значения кинематической вязкости воды в зависимости от температуры при атмосферном давлении (760 мм.рт.ст.). Значения вязкости даны в интервале температуры от 0 до 300°С. При температуре воды свыше 100°С, ее кинематическая вязкость указана в таблице на линии насыщения.

Кинематическая вязкость воды изменяет свою величину при нагревании и охлаждении. По данным таблицы видно, что с ростом температуры воды ее кинематическая вязкость уменьшается . Если сравнить вязкость воды при различных температурах, например при 0 и 300°С, то очевидно ее уменьшение примерно в 14 раз. То есть вода при нагревании становится менее вязкой, а высокая вязкость воды достигается если воду максимально охладить.

Значения коэффициента кинематической вязкости при различных температурах необходимы для вычисления величины числа Рейнольдса, которое соответствует определенному режиму течения жидкости или газа.

Если сравнить вязкость воды с вязкостью других ньютоновских жидкостей, например с , или с , то вода будет иметь меньшую вязкость. Менее вязкими, по сравнению с водой, являются органические жидкости – , бензол и сжиженные газы, например такие, как .

Динамическая вязкость воды в зависимости от температуры

Кинематическая и динамическая вязкость связаны между собой через значение плотности. Если кинематическую вязкость умножить на плотность, то получим величину коэффициента динамической вязкости (или просто динамическую вязкость).

Динамическая вязкость воды при температуре 20°С равна 1004·10 -6 Па·с. В таблице даны значения коэффициента динамической вязкости воды в зависимости от температуры при нормальном атмосферном давлении (760 мм.рт.ст.). Вязкость в таблице указана при температуре от 0 до 300°С.

Динамическая вязкость при нагревании воды уменьшается , вода становится менее вязкой и при достижении