Методы получения коллоидных растворов также можно разделить на две группы: методы конденсации и диспергирования (в отдельную группу выделяется метод пептизации , который будет рассмотрен позднее). Еще одним необходимым для получения золей условием, помимо доведения размеров частиц до коллоидных, является наличие в системе стабилизаторов - веществ, препятствующих процессу самопроизвольного укрупнения коллоидных частиц.

Рис. Классификация способов получения дисперсных систем (в скобках указан вид систем)

Дисперсионные методы

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука .

Диспергирование может быть самопроизвольное и несамопроизвольное. Самопроизвольное диспергирование характерно для лиофильных систем и связано с ростом беспорядка системы (когда из одного большого куска образуется много мелких частиц). При диспергировании при постоянной температуре рост энтропии должен превышать изменение энтальпии.

ΔН > TΔS; ΔG > 0.

Процесс диспергирования в этом случае является типично несамопроизвольным и осуществляется за счет внешней энергии.

Диспергирование характеризуется степенью диспергирования. Она определяется отношением размеров исходного продукта и частиц дисперсной фазы полученной системы. Степень диспергирования можно выразить следующим образом:


α 1 = d н /d к; α 2 = B н /B к; α 3 = V н /V к,

где d н; d к; B н; B к; V н; V к — соответственно диаметр, площадь пoвepxнocти, объем частиц до и после диспергирования.

Таким образом, степень диспергирования может быть выражена в единицах размера (α 1), площади поверхности (α 2) или объема (α 3) частиц дисперсной фазы, т.е. может быть линейной, поверхностной или объемной.

Работа W, необходимая для диспергирования твердого тела или жидкости, затрачивается на деформирование тела W д и на образование новой поверхности раздела фаз W а, которая измеряется работой адгезии. Деформирование является необходимой предпосылкой разрушения тела. Согласно П.А. Ребиндеру работа диспергирования определяется по формуле

W = W a + W д = σ*ΔB + кV,

где σ* — величина, пропорциональная или равная поверхностному натяжению на границе раздела между дисперсной фазой и дисперсионной средой; ΔB — увеличение поверхности раздела фаз в результате диспергирования; V — объем исходного тела до диспергирования; к — коэффициент, эквивалентный работе деформирования единицы объема тела.

Методы конденсации

К конденсационным методам получения дисперсных систем относятся конденсация, десублимация и кристаллизация . Они основаны на образовании новой фазы в условиях пересыщенного состояния вещества в газовой или жидкой среде. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация — для жидкой среды.

Необходимым условием конденсации и кристаллизации является пересыщение и неравномерное распределение вещества в дисперсионной среде (флуктуация концентрации), а также образование центров конденсации или зародышей.

Степень пересыщения β для раствора и пара можно выразить следующим образом:

β ж = с/с s , β П = р/р s ,

где р, с — давление пересыщенного пара и концентрация вещества в пересыщенном растворе; р s — равновесное давление насыщенного пара над плоской поверхностью; с s — равновесная концентрация, соответствующая образованию новой фазы.

Для осуществления кристаллизации охлаждают раствор или газовую смесь.

В основе конденсационных методов получение дисперсных систем лежат процессы кристаллизации, десублимации и конденсации, которые вызваны уменьшением энергии Гиббса (ΔG < 0) и протекают самопроизвольно.

При зарождении и образовании частиц из пересыщенного раствора или газовой среды изменяется химический потенциал µ, возникает поверхность раздела фаз, которая становится носителем избыточной свободной поверхностной энергии.

Работа, затрачиваемая на образование частиц, определяется поверхностным натяжением σ и равна:

W 1 = 4πr 2 σ,

где 4πr 2 — поверхность сферических частиц радиусом r.

Химический потенциал изменяется следующим образом:

Δμ = μ i // - μ i / < 0; μ i // > μ i / ,

где μ i / и μ i // — химические потенциалы гомо и гетерогенных систем (при переходе от мелких капель к крупным).

Изменение химического потенциала характеризует перенос определенного числа молей вещества из одной фазы в другую; это число n молей равно объему частицы 4πr 3 /3, деленному на мольный объем Vм:

Работа образования новой поверхности в процессе конденсации W к равна:

где W 1 и W 2 — соответственно работа, затрачиваемая на образование поверхности частиц, и работа на перенос вещества из гомогенной среды в гетерогенную.

Образование дисперсных систем может происходить в результате физической и химической конденсации, а также при замене растворителя.

Физическая конденсация осуществляется при понижении температуры газовой среды, содержащей пары различных веществ. При выполнении необходимых условий образуются частицы или капли дисперсной фазы. Подобный процесс имеет место не только в объеме газа, но и на охлажденной твердой поверхности, которую помещают в более теплую газовую среду.

Конденсация определяется разностью химических потенциалов (μ i // - μ i /) < 0, которая изменяется в результате замены растворителя. В отличие от обычной физической конденсации при замене растворителя состав и свойства дисперсионной среды не остаются постоянными. Если спиртовые или ацетоновые растворы серы, фосфора, канифоли и некоторых других органических веществ влить в воду, то раствор становится пересыщенным, происходит конденсация и образуются частицы дисперсной фазы. Метод замены растворителя является одним из немногих, при помощи которых можно получить золи.

При химической конденсации происходит образование вещества с одновременным его пересыщением и конденсацией.

Осмотическое давление обеспечивает движение воды в растениях за счет различия осмотических давлений между клеточным соком корней растений (5-20 бар) и почвенным раствором, дополнительно разбавляемом при поливе. Осмотическое давление обусловливает в растении подъем воды от корней до вершины. Таким образом, клетки листьев, теряя воду, осмотически всасывают ее из клеток стебля, а последние берут ее из клеток корня.


49. Рассчитать ЭДС медно-цинкового гальванического элемента, в котором концентрация ионов С u 2 + равна 0,001 моль/л, а ионов Zn 2+ 0,1 моль/л. При расчетах учтите стандартные значения ЭДС:

ε о (Zn 2+ /Zn 0) = – 0,74 В и ε о (Cu 2 + /Cu 0) = + 0,34 В.

Для расчета величины ЭДС используется уравнение Нернста

54. Методы получения дисперсных систем, их классификация и краткая характеристика. Какой метод получения дисперсных систем с термодинамической точки зрения наиболее выгоден?

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.

Например, свежеприготовленный и быстро промытый осадок гидроксида железа переходит в коллоидный раствор красно-бурого цвета от добавления небольшого количества раствора FeCl 3 (адсорбционная пептизация) или HCl (диссолюция).

Механизм образования коллоидных частиц по методу пептизации изучен довольно полно: происходит химическое взаимодействие частиц на поверхности по схеме:

адсорбирует ионы Fe +3 или FeO + , последующие образуются в результате гидролиза FeCl 3 и ядро мицеллы получает положительный заряд. Формулу мицеллы можно записать в виде:

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

1) Коэффициент диффузии для сферической частицы рассчитывается по уравнению Эйнштейна:

,

где N А – число Авогадро, 6 10 23 молекул/моль;

h – вязкость дисперсионной среды, Н · с/м 2 (Па · с);

r – радиус частицы, м;

R – универсальная газовая постоянная, 8,314 Дж/моль · К;

T – абсолютная температура, К;

число 3,14.

2) Среднее квадратичное смещение:

  ·D·   среднее квадратичное смещение (усредненная величина сдвига) дисперсной частицы, м 2 ;

время, за которое происходит смещение частицы (продолжительность диффузии), с;

D  коэффициент диффузии, м 2 . с -1 .

  ·D·=2*12,24*10 -10 *5=12,24*10 -9 м 2    12,24*10 -9 м 2 .

74. Поверхностно-активные вещества. Описать причины и механизм проявления их поверхностной активности.

При малых концентрациях ПАВ образуют истинные растворы, т.е. частицы диспергированы а них до отдельных молекул (или ионов). по мере увеличения концентрации возникают мицеллы. в водных растворах органические части молекул в мицеллах объединяются в жидкое углеводородное ядро, а полярные гидратированные группы находятся в воде, при этом общая площадь контакта гидрофобных частей молекул с водой резко сокращается. Благодаря гидрофильности полярных групп, окружающих мицеллу, поверхностное (межфазное) натяжение на границе ядро-вода понижено до значений, обеспечивающих термодинамическую устойчивость таких агрегатов по сравнению с молекулярным раствором и макрофазой ПАВ.

При малых мицеллярных концентрациях образуются сферические мицеллы (мицеллы Гартли) с жидким аполярным ядром.

Поверхностная активность связана с химическим составом вещества. Она, как правило, увеличивается с уменьшением полярности ПАВ (для водных растворов).

Согласно Ленгмюру, при адсорбции полярная группа, обладающая большим сродством к полярной фазе, втягивается в воду, а углеводородный неполярный радикал выталкивается наружу. происходящее при этом уменьшение энергии Гиббса ограничивает размеры поверхностного слоя толщиной в одну молекулу. при этом образуется так называемый мономолекулярный слой.

В зависимости от строения молекулы ПАВ подразделяются на неионогенные, построенные на основе эфиров, включающих этоксигруппы, и ионогенные – на основе органических кислот и оснований.

Ионогенные ПАВ диссоциируют в растворе с образованием поверхностно-активных ионов, например:

Если при диссоциации образуются поверхностно – активные анионы, ПАВ называют анионоактивными (соли жирных кислот, мыла). Если при диссоциации образуются поверхностно-активные катионы, ПАВ называют катионно-активными (соли первичных, вторичных и третичных аминов).

Существуют ПАВ которые в зависимости от рН раствора могут быть как катионноактивными, так и аниноактивными (белки, аминокислоты).

Особенность молекул ПАВ заключается в том, что они обладают большой поверхностной активностью по отношению к воде, что отражает сильную зависимость поверхностного натяжения водного раствора ПАВ от его концентрации.

При малых концентрациях ПАВ адсорбция пропорциональна концентрации.

Поверхностная активность связана с химическим составом вещества. Она, как правило, увеличивается с уменьшением полярности ПАВ (для водных растворов). Например, для карбоновых кислот величина активности выше, чем для их солей.

При исследовании гомологических рядов была обнаружена четкая зависимость активности от длины углеводородного радикала.

На основании большого количества экспериментального материала в конце 19 века Дюкло и Траубе сформулировали правило: поверхностная активность в ряду гомологов увеличивается в 3-3,5 раза при увеличении углеводородной цепи на одну СН 2 группу.

По мере увеличения концентрации адсорбция на поверхности жидкости сначала резко возрастает, а затем приближается к некоторому пределу, называемому предельной адсорбцией.

На основании этого факта и большого числа исследований, Ленгмюр выдвинул представление об ориентации молекул в поверхностном слое. Согласно Ленгмюру, при адсорбции полярная группа, обладающая большим сродством к полярной фазе – воде, втягивается в воду, а углеводородный неполярный радикал выталкивается наружу. Происходящее при этом уменьшение энергии Гиббса ограничивает размеры поверхностного слоя толщиной в одну молекулу. При этом образуется так называемый мономолекулярный слой.

В основе конденсационных методов лежат процессы возникновения новой фазы путем соединения молекул, ионов или атомов в гомогенной среде. Эти методы можно подразделить на физические и химические.

Физическая конденсация. Важнейшие физические методы получения дисперсных систем - конденсация из паров и замена растворителя. Наиболее наглядным примером конденсации из паров является образование тумана. При изменении параметров системы, в частности при понижении температуры, давление пара может стать выше равновесного давления пара над жидкостью (или над твердым телом) и в газовой фазе возникает новая жидкая (твердая) фаза. В результате система становится гетерогенной - начинает образовываться туман (дым). Таким путем получают, например, маскировочные аэрозоли, образующиеся при охлаждении паров P2O5, ZnO и других веществ. Лиозоли получаются в процессе совместной конденсации паров веществ, образующих дисперсную фазу и дисперсионную среду на охлажденной поверхности.

Широко применяют метод замены растворителя, основанный, как и предыдущий, на таком изменении параметров системы, при котором химический потенциал компонента в дисперсионной среде становится выше равновесного и тенденция к переходу в равновесное состояние приводит к образованию новой фазы. В отличие от метода конденсации паров (изменение температуры), в методе замены растворителя изменяют состав среды. Так, если насыщенный молекулярный раствор серы в этиловом спирте влить в большой объем воды, то полученный раствор в спирто-водной смеси оказывается уже пересыщенным. Пересыщение приведет к агрегированию молекул серы с образованием частиц новой фазы - дисперсной.

Методом замены растворителя получают золи серы, фосфора, мышьяка, канифоли, ацетилцеллюлозы и многих органических веществ, вливая спиртовые или ацетоновые растворы этих веществ в воду.

Химическая конденсация. Эти методы также основаны на конденсационном выделении новой фазы из пересыщенного раствора. Однако в отличии от физических методов, вещество, образующее дисперсную фазу, появляется в результате химической реакции. Таким образом, любая химическая реакция, идущая с образованием новой фазы, может быть источником получения коллоидной системы. В качестве примеров приведем следующие химические процессы.

  • 1. Восстановление. Классический пример этого метода - получение золя золота восстановлением золотохлористоводородной кислоты. В качестве восстановителя можно применять пероксид водорода (метод Зигмонди) :
  • 2HauCl2+3H2O22Au+8HCl+3O2

Известны и другие восстановители: фосфор (М. Фарадей), таннин (В. Освальд), формальдегид (Р.Жигмонди). Например,

  • 2KauO2+3HCHO+K2CO3=2Au+3HCOOK+KHCO3+H2O
  • 2. Окисление. Окислительные реакции широко распространены в природе. Это связано с тем, что при подъеме магматических расплавов и отделяющихся от них газов, флюидных фаз и подземных вод все подвижные фазы проходят из зоны восстановительных процессов на большой глубине к зонам окислительных реакций вблизи поверхности. Иллюстрацией такого рода процессов является образование золя серы в гидротермальных водах, с окислителями (сернистым газом или кислородом):
  • 2H2S+O2=2S+2H2O

Другим примером может служить процесс окисления и гидролиза гидрокарбоната железа:

4Fe(HCO3)2+O2+2H2O4Fe(OH)3+8CO2

Получающийся золь гидроокиси железа сообщает красно-коричневую окраску природным водам и является источником ржаво-бурых зон отложений в нижних слоях почвы.

  • 3. Гидролиз. Широкое распространение в природе и важное значение в технике имеет образование гидрозолей в процессах гидролиза солей. Процессы гидролиза солей применяют для очистки сточных вод (гидроксид алюминия, получаемый гидролизом сульфата алюминия). Высокая удельная поверхность образующихся при гидролизе коллоидных гидроксидов позволяет эффективно адсорбировать примеси - молекулы ПАВ и ионы тяжелых металлов.
  • 4. Реакции обмена. Этот метод наиболее часто встречается на практике. Например, получение золя сульфида мышьяка:
  • 2H3AsO3+3H2SAs2S3+6H2O,

получение золя йодида серебра:

AgNO3+KIAgI+KNO3

Интересно, что реакции обмена дают возможность получать золи в органических растворителях. В частности, хорошо изучена реакция

Hg(CN)2+H2SHgS+2HCN

Ее проводят, растворяя Hg(CN)2 в метиловом, этиловом или пропиловом спирте и пропуская через раствор сероводород.

Хорошо известные в аналитической химии реакции, как, например, получение осадков сульфата бария или хлорида серебра

Na2SO4 + BaCl2 BaSO4 + 2NaCl

AgNO3 + NaCl AgCl + NaNO3

в определенных условиях приводят к получению почти прозрачных, слегка мутноватых золей, из которых в дальнейшем могут выпадать осадки.

Таким образом, для конденсационного получения золей необходимо, чтобы концентрация вещества в растворе превышала растворимость, т.е. раствор должен быть пересыщенным. Эти условия являются общими как для образования высокодисперсного золя, так и обычного осадка твердой фазы. Однако, в первом случае требуется соблюдение особых условий, которые, согласно теории, разработанной Веймарном, заключается в одновременности возникновения огромного числа зародышей дисперсной фазы. Под зародышем следует понимать минимальное скопление новой фазы, находящееся в равновесии с окружающей средой. Для получения высокодисперсной системы необходимо, чтобы скорость образования зародышей была намного больше, чем скорость роста кристаллов. Практически это достигается путем вливания концентрированного раствора одного компонента в очень разбавленный раствор другого при сильном перемешивании.

Золи образуются легче, если в процессе их получения в растворы вводят специальные соединения, называемые защитными веществами, или стабилизаторами. В качестве защитных веществ при получении гидрозолей применяют мыла, белки и другие соединения. Стабилизаторы используют и при получении органозолей.

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-1.jpg" alt=">Методы получения дисперсных систем ">

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-2.jpg" alt="> Дисперсные системы получают с необходимым набором физических и химических свойств (состав, агрегатное состояние,"> Дисперсные системы получают с необходимым набором физических и химических свойств (состав, агрегатное состояние, размер, форма, структура, поверхностные свойства). При получении дисперсных систем решают две важные задачи: получение дисперсных частиц нужного размера и формы; стабилизация дисперсных систем, т. е. сохранение размеров дисперсных частиц в течение достаточно длительного времени (особенно актуальна для наночастиц). Методы получения дисперсных систем делятся на: диспергационные, конденсационные и метод пептизации. 2

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-3.jpg" alt="> Диспергационные методы Методы заключаются в измельчении крупных (макроскопических) образцов данного"> Диспергационные методы Методы заключаются в измельчении крупных (макроскопических) образцов данного вещества до частиц дисперсных размеров. При диспергировании химический состав и агрегатное состояние вещества обычно не меняются, меняется размер частиц и их форма. Диспергирование происходит, как правило, не самопроизвольно, а с затратой внешней работы, расходуемой на преодоление межмолекулярных сил при дроблении вещества. Диспергационные методы используют в основном для получения грубодисперсных частиц – от 1 мкм и выше - производство цемента (1 млрд. т в год), измельчении руд полезных ископаемых, получение пищевых продуктов и лекарств и т. д. 3

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-4.jpg" alt="> Механизм уменьшения твердости заключается в том, что добавляемое вещество (понизитель твердости) адсорбируется в"> Механизм уменьшения твердости заключается в том, что добавляемое вещество (понизитель твердости) адсорбируется в местах дефектов кристаллической решетки твердого тела, что приводит к экранированию сил сцепления, действующими между противоположными поверхностями щели (при адсорбции электролитов возникают силы электростатического отталкивания между одноименно заряженными ионами, ПАВы понижают поверхностное натяжение на границе раздела твердое тело – газ, что облегчает деформирование твердого тела). Добавки помогают не только разрушить материал, но и стабилизируют систему в дисперсном состоянии, т. к. , адсорбируясь на поверхности частиц, мешают их обратному слипанию. 4

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-5.jpg" alt="> Конденсационные методы основаны на ассоциации молекул в агрегаты из истинных растворов"> Конденсационные методы основаны на ассоциации молекул в агрегаты из истинных растворов (гомогенных сред). Путем конденсации в зависимости от условий могут быть получены системы любой дисперсности, с частицами любого размера. Эти методы в основном используют для получения дисперсных систем с размерами частиц 10 -8 – 10 -9 м (высокодисперсные и ультрадисперсные), поэтому эти методы широко используют в нанотехнологиях. Конденсационные методы не требуют затраты внешней работы. Появление новой фазы происходит при пересыщении среды, т. е. создании концентраций, превышающих равновесные. 5

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-6.jpg" alt="> Механизм конденсации включает стадии: 1. Стадия зародышеобразования - возникновение зародышей (центров"> Механизм конденсации включает стадии: 1. Стадия зародышеобразования - возникновение зародышей (центров кристаллизации) в пересыщенном растворе; зародыши образуются тем легче, чем больше в растворе центров зародышеобразования (чужеродных частиц). 2. Рост зародышей. 3. Формирование слоя стабилизатора (слоя противоионов), определяющего устойчивость полученной дисперсной системы (для дисперсных систем с жидкой дисперсионной средой). 6

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-7.jpg" alt="> Правила получения дисперсных систем конденсационными методами 1. Чем больше степень"> Правила получения дисперсных систем конденсационными методами 1. Чем больше степень пересыщения, тем меньше радиус зародыша, тем легче он образуется. 2. Для получения мелких частиц необходимо, чтобы скорость образования зародышей была больше скорости их роста. Пересыщение можно вызвать физическим процессом или проведением химической реакции. Различают физические и химические конденсационные методы. 7

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-8.jpg" alt="> Химические конденсационные методы Методы основаны на образовании новой фазы (м. р."> Химические конденсационные методы Методы основаны на образовании новой фазы (м. р. с.) в результате протекания химических реакций. Для получения высокодисперсных золей концентрированный раствор одного компонента добавляют к разбавленному раствору другого компонента при постоянном перемешивании. 8

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-9.jpg" alt="> Примеры химических реакций, используемых для образования коллоидных систем: 1. Реакции"> Примеры химических реакций, используемых для образования коллоидных систем: 1. Реакции восстановления (получение золей Au, Ag, Pt и др. металлов). Восстановление аурата калия формальдегидом. 2 Na. Au. O 2 + 3 HCOH + Na 2 CO 3 = 2 Au + 3 HCOONa +Na. HCO 3 + H 2 O В результате получается золь золота, стабилизированный ауратом калия. Строение мицеллы этого золя можно представить: 2. Реакции обмена (метод, наиболее часто встречающийся на практике). Получение золя иодида серебра. Ag. NO 3 + KJ(изб.) = Ag. J↓ + KNO 3 Строение мицеллы: 9

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-10.jpg" alt="> Метод пептизации Пептизация – метод, основанный на переводе в"> Метод пептизации Пептизация – метод, основанный на переводе в коллоидный раствор осадков, первичные размеры которых уже имеют размеры высокодисперсных систем. Суть метода: свежевыпавший рыхлый осадок переводят в золь путем обработки пептизаторами (растворами электролитов, ПАВов, растворителем). 10

Src="http://present5.com/presentation/3/40492240_88526628.pdf-img/40492240_88526628.pdf-11.jpg" alt="> Методы очистки дисперсных систем Полученные золи часто содержат низкомолекулярные примеси (чужеродные"> Методы очистки дисперсных систем Полученные золи часто содержат низкомолекулярные примеси (чужеродные электролиты), способные разрушать коллоидные системы. Полученные золи во многих случаях приходится очищать. Очищают также и дисперсные системы природного происхождения (латексы, нефть, вакцины, сыворотки и т. д.). Для очистки от примесей используют: диализ, электродиализ, ультрафильтрацию. Диализ – извлечение из золей низкомолекулярных веществ чистым растворителем с помощью полупроницаемой перегородки (мембраны), через которую не проходят коллоидные частицы. Электродиализ – диализ, ускоренный применением внешнего электрического поля. Ультрафильтрация – электродиализ под давлением (гемодиализ). 11

ДИСПЕРГИРОВАНИЕ

Диспергирование может быть самопроизвольным и несамопроизвольным. Самопроизвольное диспергирование характерно для лиофильных систем. В отношении лиофобных систем самопроизвольноедиспергирование исключено, диспергированиев них возможно путем затраты определенной работы.

Диспергирование характеризуется степенью диспергирования ( a ) . Она определяется отношением размеров исходного продукта и частиц дисперсной фазы полученной системы.

a = d н /d к,(7.1)

d н ,d к - диаметр частиц до и после измельчения.

Работа W , необходимая для диспергирования твердого тела или жидкости, затрачивается на деформирование тела W д и на образование новой поверхности раздела фаз W а, которая измеряется работой адгезии. Деформирование является необходимой предпосылкой разрушения тела. Работа диспергирования определяется формулой:

W = W а + W д = * D B + k V (7.2)

* - величина, пропорциональная или равная поверхностному натяжению на границе раздела,

D B - увеличение поверхности раздела фаз в результате диспергирования,

V - объем исходного тела до диспергирования,

k - коэффициент, эквивалентный работе деформирования единицы объема тела.

При помощи методов коллоидной химии можно снижать затраты энергии, необходимые для диспергирования. К числу таких методов относится адсорбционное понижение прочности. В результате адсорбции ПАВ на внешней и внутренней поверхности твердого тела снижается межфазовое поверхностное натяжение, облегчается деформирование твердого тела.

Снижение энергии диспергированияможет быть достигнуто следующими методами:проведение процесса в жидкой среде, помол с одновременной вибрацией, применение ультразвукового метода.

ПОЛУЧЕНИЕ ДИСПЕРСНЫХ СИСТЕМ ЗА СЧЕТ КОНДЕНСАЦИОННЫХ ПРОЦЕССОВ

Конденсационные методы : конденсация, десублимация, кристаллизация. Они основаны на образовании новой фазы в условиях пересыщенного состояния вещества в газовой или жидкой среде. При этом система переходит из гомогенной в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация - для жидкой среды.

Необходимое условие конденсации и кристаллизации - пересыщение и неравномерное распределение вещества в дисперсионной среде и образование центров конденсации (зародышей ).

Степень пересыщения b для раствора и пара можно выразить следующим образом:

b ж = с/с s , b п = р/р s (7.3)

р, с - давление пересыщенного пара и концентрация вещества в пересыщенном растворе, р s - равновесное давление насыщенного пара над плоской поверхностью, с s - равновесная растворимость, соответствующая образованию новой фазы.

Конденсации способствуют мельчайшие частички. Например, в качестве ядер конденсации водяного пара могут служить продукты сгорания самолетного топлива, частицы почвы и т.д..

Когда ядра конденсации отсутствуют, то капли могут существовать в переохлажденном состоянии. При конденсации паров в этих условиях будут образовываться не капли, а кристаллы. Процесс перехода газообразного вещества в твердое, минуя жидкое, состояние, называется десублимацией.

Сублимация - переход твердого вещества в газообразное, минуя жидкое.

В основе конденсационных методовлежатсамопроизвольные процессы, которыесопровождаются уменьшением энергии Гиббса.

При зарождении и образовании частиц из пересыщенного раствора или газовой фазы изменяется химический потенциал m , возникает поверхность раздела фаз, которая становится носителем избыточной свободной поверхностной энергии.

Конденсация бывает физическая и химическая.

Физическая конденсация - осуществляется при понижении температуры газовой среды, содержащей пары различных веществ.

Изотермическая перегонка : уменьшение размеров мелких частиц до их полного исчезновения и рост крупных частиц.

МЕМБРАНЫ И МЕМБРАННЫЕ ПРОЦЕССЫ

Мембраны - полупроницаемые перегородки, при помощи которых осуществляется осмос. Осмос - самопроизвольный процесс переноса растворителя (дисперсионной среды) через мембрану из растворителя (менее концентрированного или коллоидного раствора) в раствор (или в более концентрированный раствор).

Мембраны - тонкие пористые пленки, они являются двухмерными высокодисперсными системами.

Наиболее часто мембраны применяют для очистки жидкостей от примесей при помощи обратного осмоса (движение растворенных примесей через мембрану под действием внешнего давления)


Рис.7.2.Схема осмоса (а), обратного осмоса (б), ультрафильтрациии диализа (в)

1.дисперсионная среда (чистая жидкость) Ж, 2.коллоидный Т/Ж или истинный раствор, 3.мембрана, 4.поток чистой жидкости (растворителя), 5.поток примесей.

Если со стороны дисперсной системы 2 приложить давление Р, то поток жидкости из области 2 будет перемещаться в область 1.Через мембрану 3 проходят только молекулы растворителя (вследствие их большей подвижности). Содержимое области 1 будет обогащаться чистой жидкостью, а в области 2 сконцентрируются примеси.

Направление движения жидкости при обратном осмосе противоположно ее движению в случае осмоса.

Работа, необходимая для осуществления обратного осмоса, расходуется на продавливание жидкости через поры:

W ос = D рV (7.4)

D р - перепад давления по обе стороны мембраны,

V - объем жидкости, прошедшей через мембраны.

D р = Р - p (7.5)

Р - избыточное давление над раствором,

p - осмотическое давление.

Из равенства 7.5 следует, что Р > p . Это условие определяет избыточное давление, необходимое для осуществления обратного осмоса.

При помощи диализа (7.2, в) осуществляется очистка дисперсной системы от примесей в виде ионов или молекул. Дисперсную систему помещают в правую часть 2 сосуда, отделенную от левой части 1 мембраной 3. Мембрана проницаема для молекул и ионов, но задерживает частицы дисперсной фазы. Примеси в результате диффузии из области большей концентрации 2 самопроизвольно будут переходить в область меньшей концентрации 1.

Интенсифицировать очистку коллоидного раствора при помощи диализа можно путем приложения внешнего давления р (7.2, в). В этом случае процесс называют ультрафильтрацией.

Обратный осмос, диализ, ультрафильтрация используются для различный целей, но имеют много общего, используется аналогичная аппаратура.

Основной принцип действия мембран заключается в избирательной проницаемости, которая определяется размерами пор, свойствами очищаемых систем и внешним давлением.

Кроме очистки растворов мембраны способствуют равновесию электролитов в присутствии частиц или ионов, размеры которых не позволяют им проникать через поры, возникает так называемое мембранное равновесие , которое имеет практическое значение для растворов ВМС, в процессахнабухания веществ и в различных физиологических процессах.

Мембранная технология намного эффективней других аналогичных технологий, требует меньших энергетических затрат.

ПРИЧИНА МОЛЕКУЛЯРНО-КИНЕТИЧЕСКИХ СВОЙСТВ

Все молекулярно-кинетические свойства вызваны хаотичным тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движений молекул.

Молекулы обладают различной кинетической энергией. Тем не менее, при данной температуре среднее значение кинетической энергии молекул остается постоянным. Флуктуация значений кинетической энергии молекул дисперсионной среды является причиной молекулярно-кинетических свойств.

Молекулярно-кинетические свойства проявляются в жидкой и газообразной дисперсионной среде.

БРОУНОВСКОЕ ДВИЖЕНИЕ

Мельчайшие частицы незначительной массы испытывают неодинаковые удары со стороны молекул дисперсионной среды, на рисунке показана результирующая силаF , которая заставляет частицы двигаться.

Рис.7.3.Воздействие молекул дисперсионной среды на частицу дисперсной фазы.

Направление и импульс этой силы непрерывно меняются, поэтому частицы совершают хаотичное движение.

Определить направление результирующей силы и связать его с молекулярно-кинетическими свойствами среды удалось в 1907 году независимо друг от другаЭйнштейну и Смолуховскому.

В основу их расчетовбыл взят не истинный путь частиц, а сдвиг частиц (рис.7.4).

Путь частицы определяется ломаной линией, а сдвиг х характеризует изменение координаты частицы за определенный промежуток времени. Средний сдвиг будет определять среднеквадратичное смещение частицы:

(7.6)

х 1 , х 2 ,х i - сдвиги частицы за определенное время.

Теория броуновского движения исходит из представления о взаимодействии случайной силы f ( t ) , которая характеризует удары молекул и, и силы F t , зависящей от времени и силы трения при движении частиц дисперсной фазы в дисперсионной среде со скоростью v . Уравнение броуновского движения (уравнение Ланжевена) имеет вид:

m (d v / d t ) + h v = F t + f ( t ) (7.7)

где m - масса частицы, h - коэффициент трения при движении частиц.

Для больших промежутков времени инерцией частиц, то есть членом m (d v / d t ) можно пренебречь. После интегрирования 7.7. при условии, что среднее произведение импульсов случайной силы равно нулю находят средний сдвиг:

(7.8)

где t - время, h - вязкость дисперсионной среды, r -радиус частиц дисперсной фазы.

Броуновское движение наиболее ярко выражено у высокодисперсных систем. Уяснение причин и разработка теории броуновского движения - блестящее доказательство молекулярной природы вещества.

ДИФФУЗИЯ

Диффузия - процесс самопроизвольного распространения вещества из области с большей концентрацией в область сменьшей концентрацией.

Виды диффузии :

1. молекулярная ;

2. ионная ;

3. диффузия коллоидных частиц.

Ионная диффузия связана с самопроизвольным перемещением ионов. Формирование диффузного слоя противоионов на поверхности частиц дисперсной фазы происходит по механизму ионной диффузии.

Диффузия высокодисперсионных коллоидных частиц показана на рис. 7.5. n 1 > n 2 . То есть диффузия идет снизу вверх. Диффузия характеризуется определенной скоростью перемещения вещества через поперечное сечение В, которая равна d m / d t .

На расстоянии D х разность концентраций составит n 2 - n 1 , это величина отрицательная.

d n / d х - градиент концентрации.

Скорость перемещения вещества:

d m = D ·(d n / d x ) ·B d t (7.9)

D - коэффициент диффузии.

Уравнение 7.9 - основное уравнение диффузии в дифференциальной форме. Оно справедливо для всех видов диффузии.в интегральной форме применимо для двух процессов: стационарного и нестационарного .

Для стационарного процесса градиент концентраций постоянен. Интегрируя 7.9., получим:

m = D (d n / d x ) B t - первый закон Фика (7.10)

Физический смысл коэффициента диффузии : если-d n / d x = 1, В = 1, t = 1, то m = D , то есть коэффициент диффузии численно равен массе диффундирующего вещества, когда градиент концентраций, площадь сечения диффузионного потока, время равны единице.

Коллоидные частицы характеризуются минимальным коэффициентом диффузии.

Количественно диффузия определяется коэффициентом диффузии , который связан со средним сдвигом:

х -,2 = 2D r , r = х -,2 /(2D t ) (7.11)

D = k T / (6 p h r ) (7.12)

k = R / N А .

Из этой формулы видно, что коэффициент диффузии зависит и от формы частиц, таким образом, зная коэффициент диффузии, можно определить размер частиц дисперсной фазы.

ОСМОС

При разделении двух растворов различной концентрации полупроницаемой перегородкой возникает поток растворителя от меньшей концентрации к большей. Этот процесс называется осмосом.

1 - сосуд с раствором, 2 - емкость с чистой жидкостью, 3 -полупроницаемая перегородка (мембрана).

Термодинамическое объяснение осмоса:

Химический потенциал чистой жидкости m 2 превышает химический потенциал той же жидкости в растворе m 1 .Процесс идет самопроизвольно в сторону меньшего химического потенциала до тех пор, пока произойдет выравнивание химических потенциалов.

В результате перемещения жидкости в емкости 1 создается избыточное давление p , называемое осмотическим . Растворитель, проникающий в область 1, поднимают уровень жидкости на высоту Н, что компенсирует давление чистого растворителя.

Осмотическое давление - избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану.

Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза, если бы она в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор). Осмотическое давление возникает самопроизвольно, как следствие молекулярно-кинетических свойств дисперсионной среды.

Осмотическое давление для идеальных растворов неэлектролитов:

p V = R T l n (1 x ) (7.13)

V - молярный объем растворителя, х - мольная доля растворенного вещества.

В случае разбавленных растворов неэлектролитов:

p V = n R T (7.14)

где n - число молей растворенного вещества.

Если масса растворенного вещества = q , масса =М, то n = q /М, то:

p = n (R T /V ) = (q /V )(R T /V )(7.15)

М= m N А, m = 4/3 p r 3 r (7.16)

r - плотность частиц, m - молекулярная масса частиц дисперсной фазы, r - радиус частиц дисперсной фазы.

Тогда:

(7.17)

Из этой формулы следует, что осмотическое давление прямо пропорционально концентрации дисперсной фазы и обратно пропорционально размеру этих частиц.

Осмотическое давление коллоидных растворов незначительно.

СЕДИМЕНТАЦИЯ

Седиментация - оседание частиц дисперсной фазы, обратная седиментация - всплывание частиц.

На каждую частицу в системе действует сила тяжести и подъемная сила Архимеда:

F g = m g = v g r иF А = v g r 0 (7.18)

где r , r 0 - плотность частиц дисперсной фазы и дисперсионной среды,m - масса частицы, v - объем частицы, g - ускорение свободного падения.

Эти силы постоянны и направлены в разные стороны. Равнодействующая сила, вызывающая седиментацию, равна:

F сед = F g -F А = v ( r - r 0 ) g (7.19)

Если r > r 0 , то частица оседает, если наоборот, то всплывает.

При ламинарном движении частицы возникает сопротивление - сила трения:

F тр = Вu (7.20)

В - коэффициент трения, u - скорость движения частицы.

Сила, действующая на частицу во время движения:

F = F сед - F тр = v g (r - r 0 ) – Вu (7.21)

С ростом скорости при достаточно большом коэффициенте трения наступает момент, когда сила трения достигает силы, вызывающей седиментацию и движущая сила будет равна нулю. После этого скорость движения частицы становится постоянной:

u = v g (r (7.23)

Зная величины, входящие в уравнение, легко можно найти радиус частиц дисперсной фазы.

Способность к седиментации выражают через константу седиментации :

S сед = u /g (7.24)

Явление седиментации широко используется в различных отраслях промышленности, в том числе часто применяется для анализа дисперсных систем.