В данной статье рассмотрим способы определить расстояние от точки до точки теоретически и на примере конкретных задач. И для начала введем некоторые определения.

Определение 1

Расстояние между точками – это длина отрезка, их соединяющего, в имеющемся масштабе. Задать масштаб необходимо, чтобы иметь для измерения единицу длины. Потому в основном задача нахождения расстояния между точками решается при использовании их координат на координатной прямой, в координатной плоскости или трехмерном пространстве.

Исходные данные: координатная прямая O x и лежащая на ней произвольная точка А. Любой точке прямой присуще одно действительное число: пусть для точки А это будет некое число х A , оно же – координата точки А.

В целом можно говорить о том, что оценка длины некого отрезка происходит в сравнении с отрезком, принятым за единицу длины в заданном масштабе.

Если точке А соответствует целое действительное число, отложив последовательно от точки О до точки по прямой О А отрезки – единицы длины, мы можем определить длину отрезка O A по итоговому количеству отложенных единичных отрезков.

К примеру, точке А соответствует число 3 – чтобы попасть в нее из точки О, необходимо будет отложить три единичных отрезка. Если точка А имеет координату - 4 – единичные отрезки откладываются аналогичным образом, но в другом, отрицательном направлении. Таким образом в первом случае, расстояние О А равно 3 ; во втором случае О А = 4 .

Если точка A имеет в качестве координаты рациональное число, то от начала отсчета (точка О) мы откладываем целое число единичных отрезков, а затем его необходимую часть. Но геометрически не всегда возможно произвести измерение. К примеру, затруднительным представляется отложить на координатной прямой дробь 4 111 .

Вышеуказанным способом отложить на прямой иррациональное число и вовсе невозможно. К примеру, когда координата точки А равна 11 . В таком случае возможно обратиться к абстракции: если заданная координата точки А больше нуля, то O A = x A (число принимается за расстояние); если координата меньше нуля, то O A = - x A . В общем, эти утверждения справедливы для любого действительного числа x A .

Резюмируя: расстояние от начала отсчета до точки, которой соответствует действительное число на координатной прямой, равно:

  • 0, если точка совпадает с началом координат;
  • x A , если x A > 0 ;
  • - x A , если x A < 0 .

При этом очевидно, что сама длина отрезка не может быть отрицательной, поэтому, используя знак модуля, запишем расстояние от точки O до точки A с координатой x A : O A = x A

Верным будет утверждение: расстояние от одной точки до другой будет равно модулю разности координат. Т.е. для точек A и B , лежащих на одной координатной прямой при любом их расположении и имеющих соответственно координаты x A и x B: A B = x B - x A .

Исходные данные: точки A и B , лежащие на плоскости в прямоугольной системе координат O x y с заданными координатами: A (x A , y A) и B (x B , y B) .

Проведем через точки А и B перпендикуляры к осям координат O x и O y и получим в результате точки проекции: A x , A y , B x , B y . Исходя из расположения точек А и B далее возможны следующие варианты:

Если точки А и В совпадают, то расстояние между ними равно нулю;

Если точки А и В лежат на прямой, перпендикулярной оси O x (оси абсцисс), то точки и совпадают, а | А В | = | А y B y | . Поскольку, расстояние между точками равно модулю разности их координат, то A y B y = y B - y A , а, следовательно A B = A y B y = y B - y A .

Если точки A и B лежат на прямой, перпендикулярной оси O y (оси ординат) – по аналогии с предыдущим пунктом: A B = A x B x = x B - x A

Если точки A и B не лежат на прямой, перпендикулярной одной из координатных осей, найдем расстояние между ними, выведя формулу расчета:

Мы видим, что треугольник А В С является прямоугольным по построению. При этом A C = A x B x и B C = A y B y . Используя теорему Пифагора, составим равенство: A B 2 = A C 2 + B C 2 ⇔ A B 2 = A x B x 2 + A y B y 2 , а затем преобразуем его: A B = A x B x 2 + A y B y 2 = x B - x A 2 + y B - y A 2 = (x B - x A) 2 + (y B - y A) 2

Сформируем вывод из полученного результата: расстояние от точки А до точки В на плоскости определяется расчётом по формуле с использованием координат этих точек

A B = (x B - x A) 2 + (y B - y A) 2

Полученная формула также подтверждает ранее сформированные утверждения для случаев совпадения точек или ситуаций, когда точки лежат на прямых, перпендикулярных осям. Так, для случая совпадения точек A и B будет верно равенство: A B = (x B - x A) 2 + (y B - y A) 2 = 0 2 + 0 2 = 0

Для ситуации, когда точки A и B лежат на прямой, перпендикулярной оси абсцисс:

A B = (x B - x A) 2 + (y B - y A) 2 = 0 2 + (y B - y A) 2 = y B - y A

Для случая, когда точки A и B лежат на прямой, перпендикулярной оси ординат:

A B = (x B - x A) 2 + (y B - y A) 2 = (x B - x A) 2 + 0 2 = x B - x A

Исходные данные: прямоугольная система координат O x y z с лежащими на ней произвольными точками с заданными координатами A (x A , y A , z A) и B (x B , y B , z B) . Необходимо определить расстояние между этими точками.

Рассмотрим общий случай, когда точки A и B не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки A и B плоскости, перпендикулярные координатным осям, и получим соответствующие точки проекций: A x , A y , A z , B x , B y , B z

Расстояние между точками A и B являет собой диагональ полученного в результате построения параллелепипеда. Согласно построению измерения этого параллелепипеда: A x B x , A y B y и A z B z

Из курса геометрии известно, что квадрат диагонали параллелепипеда равен сумме квадратов его измерений. Исходя из этого утверждения получим равенство: A B 2 = A x B x 2 + A y B y 2 + A z B z 2

Используя полученные ранее выводы, запишем следующее:

A x B x = x B - x A , A y B y = y B - y A , A z B z = z B - z A

Преобразуем выражение:

A B 2 = A x B x 2 + A y B y 2 + A z B z 2 = x B - x A 2 + y B - y A 2 + z B - z A 2 = = (x B - x A) 2 + (y B - y A) 2 + z B - z A 2

Итоговая формула для определения расстояния между точками в пространстве будет выглядеть следующим образом:

A B = x B - x A 2 + y B - y A 2 + (z B - z A) 2

Полученная формула действительна также для случаев, когда:

Точки совпадают;

Лежат на одной координатной оси или прямой, параллельной одной из координатных осей.

Примеры решения задач на нахождение расстояния между точками

Пример 1

Исходные данные: задана координатная прямая и точки, лежащие на ней с заданными координатами A (1 - 2) и B (11 + 2) . Необходимо найти расстояние от точки начала отсчета O до точки A и между точками A и B .

Решение

  1. Расстояние от точки начала отсчета до точки равно модулю координаты этой точки, соответственно O A = 1 - 2 = 2 - 1
  2. Расстояние между точками A и B определим как модуль разности координат этих точек: A B = 11 + 2 - (1 - 2) = 10 + 2 2

Ответ: O A = 2 - 1 , A B = 10 + 2 2

Пример 2

Исходные данные: задана прямоугольная система координат и две точки, лежащие на ней A (1 , - 1) и B (λ + 1 , 3) . λ – некоторое действительное число. Необходимо найти все значения этого числа, при которых расстояние А В будет равно 5 .

Решение

Чтобы найти расстояние между точками A и B , необходимо использовать формулу A B = (x B - x A) 2 + y B - y A 2

Подставив реальные значения координат, получим: A B = (λ + 1 - 1) 2 + (3 - (- 1)) 2 = λ 2 + 16

А также используем имеющееся условие, что А В = 5 и тогда будет верным равенство:

λ 2 + 16 = 5 λ 2 + 16 = 25 λ = ± 3

Ответ: А В = 5 , если λ = ± 3 .

Пример 3

Исходные данные: задано трехмерное пространство в прямоугольной системе координат O x y z и лежащие в нем точки A (1 , 2 , 3) и B - 7 , - 2 , 4 .

Решение

Для решения задачи используем формулу A B = x B - x A 2 + y B - y A 2 + (z B - z A) 2

Подставив реальные значения, получим: A B = (- 7 - 1) 2 + (- 2 - 2) 2 + (4 - 3) 2 = 81 = 9

Ответ: | А В | = 9

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Расстояние между точками на координатной прямой - 6 класс.

Формула нахождения расстояния между точками на координатной прямой

Алгоритм нахождения координаты точки - середины отрезка

Спасибо коллегам по интернету, чей материал использовала в данной презентации!

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Расстояние между точками на координатной прямой х 0 1 А В АВ = ρ (А, В)

Расстояние между точками на координатной прямой Цель урока: - Найти способ (формулу, правило) для нахождения расстояния между точками на координатной прямой. - Научиться находить расстояние между точками н а координатной прямой, используя найденное правило.

1. Устный счет 15 -22 +8 -31 +43 -27 -14

2 . Устно решите задание с помощью координатной прямой: сколько целых чисел заключено между числами: а) – 8,9 и 2 б) – 10,4 и – 3,7 в) – 1,2 и 4,6? а) 10 б) 8 в) 6

0 1 2 7 п оложительные числа -1 -5 о трицательные числа Расстояние от дома до стадиона 6 Расстояние от дома до школы 6 Координатная прямая

0 1 2 7 -1 -5 Расстояние от стадиона до дома 6 Расстояние от школы до дома 6 Нахождение расстояния между точками на координатной прямой ρ (-5 ; 1)=6 ρ (7 ; 1)=6 Расстояние между точками будем обозначать буквой ρ (ро)

0 1 2 7 -1 -5 Расстояние от стадиона до дома 6 Расстояние от школы до дома 6 Нахождение расстояния между точками на координатной прямой ρ (-5 ; 1)=6 ρ (7 ; 1)=6 ρ (a; b) = ? | a-b |

Расстояние между точками a и b равно модулю разности координат этих точек. ρ (a; b)= | a-b | Расстояние между точками на координатной прямой

Геометрический смысл модуля действительного числа a b a a=b b x x x Расстояние между двумя точками

0 1 2 7 -1 -5 На йдите расстояния между точками на координатной прямой - 2 - 3 - 4 3 4 5 6 -6 ρ (-6 ; 2)= ρ (6 ; 3)= ρ (0 ; 7)= ρ (1 ; -4) = 8 3 7 5

0 1 2 7 -1 -5 На йдите расстояния между точками на координатной прямой - 2 - 3 - 4 3 4 5 6 -6 ρ (2 ; -6)= ρ (3 ; 6)= ρ (7 ; 0)= ρ (-4 ; 1) = 8 3 7 5

Вывод: значения выражений | a – b | и | b – a | равны при любых значениях а и b =

–16 –2 0 –3 +8 0 +4 +17 0 ρ(–3; 8) = 11; |(–3) – (+8)| = 11; |(+8) – (–3)| = 11. ρ(–16; –2) = 14; |(–16) – (–2)| = 14; |(–2) – (–16)| = 14. ρ(4; 17) = 13; |(+4) – (+17)| = 13; |(+17) – (+4)| = 13. Расстояние между точками координатной прямой

Найдите ρ(х; у) , если: 1) x = – 14, у = – 23; ρ(х; у)=| х – у |=|–14–(– 23)|=|–14+23|=| 9 |=9 2) x = 5,9 , у = –6,8; ρ(х; у)=|5, 9 –(– 6,8)|=|5,9+6,8|=| 12,7 |=12,7

Продолжить предложение 1. Координатная прямая – это прямая с указанными на ней … 2. Расстояние между двумя точками - это … 3. Противоположные числа – это числа, … 4. Модулем числа Х называют … 5. - Сравните значения выражений a – b V b – a сделайте вывод … - Сравните значения выражений | a – b | V | b – a | c делайте вывод …

Винтик и Шпунтик идут по координатному лучу. Винтик находится в точке В(236), Шпунтик – в точке Ш(193) На каком расстоянии друг от друга находятся Винтик и Шпунтик? ρ (B, Ш) = 43

Найдите расстояние между точками А(0), В(1) А(2), В(5) А(0), В (- 3) А(- 10), В(1) АВ = 1 АВ = 3 АВ = 3 АВ = 11

Найдите расстояние между точками А(- 3,5), В(1,4) К(1,8), В(4,3) А(- 10), С(3)

Проверка АВ = КВ = АС =

С(– 5) С(– 3) Найдите координату точки - середины отрезка ВА

На координатной прямой отмечены точки А (–3,25) и В (2,65). Найдите координату точки О – середины отрезка АВ. Решение: 1) ρ(А;В)= |–3,25 – 2,65| = |–5,9| = 5,9 2) 5,9: 2 = 2,95 3) –3,25 + 2,95 = – 0,3 или 2,65 – 2,95 = – 0,3 Ответ: О(–0,3)

На координатной прямой отмечены точки С(– 5,17) и D(2,33). Найдите координату точки А – середины отрезка CD. Решение: 1) ρ(С; D)= |– 5 , 17 – 2, 33 | = |– 7 , 5 | = 7 , 5 2) 7 , 5: 2 = 3 , 7 5 3) – 5 , 17 + 3 , 7 5 = – 1 , 42 или 2, 33 – 3 , 7 5 = – 1 , 42 Ответ: A (– 1 , 42)

Вывод: Алгоритм нахождения координаты точки – середины данного отрезка: 1. Найти расстояние между точками – концами данного отрезка = 2. Разделить результат-1 на 2 (половина величины) = с 3. Прибавить результат-2 к координате а или вычесть результат-2 из координаты а + с или - с 4. Результат-3 есть координата точки - середины данного отрезка

Работа с учебником: §19, с.112, А. № 573, 575 В. № 578, 580 Домашнее задание: §19, с.112, А. № 574, 576, В. № 579, 581 подготовиться к КР «Сложение и вычитание рациональных чисел. Расстояние между точками на координатной прямой»

Сегодня я узнал… Было интересно… Я понял, что… Теперь я могу… Я научился… У меня получилось… Я попробую… Меня удивило… Мне захотелось…

§ 1 Правило нахождения расстояния между точками координатной прямой

В этом уроке выведем правило нахождения расстояния между точками координатной прямой, а также научимся находить длину отрезка, используя это правило.

Выполним задание:

Сравните выражения

1. а = 9, b = 5;

2. а = 9, b = -5;

3. а = -9, b = 5;

4. а = -9, b = -5.

Подставим значения в выражения и найдем результат:

Модуль разности 9 и 5 равен модулю 4, модуль 4 равен 4. Модуль разности 5 и 9 равен модулю минус 4, модуль -4 равен 4.

Модуль разности 9 и -5 равен модулю 14, модуль 14 равен 14. Модуль разности минус 5 и 9 равен модулю -14, модуль -14=14.

Модуль разности минус 9 и 5 равен модулю минус 14, модуль минус 14 равен 14. Модуль разности 5 и минус 9 равен модулю 14, модуль 14 равен 14

Модуль разности минус 9 и минус 5 равен модулю минус 4,модуль -4 равен 4. Модуль разности минус 5 и минус 9 равен модулю 4, модуль 4 равен (l-9 - (-5)l = l-4l = 4; l-5 - (-9)l = l4l = 4)

В каждом случае получились равные результаты, следовательно, можно сделать вывод:

Значения выражений модуль разности а и b и модуль разности b и а равны при любых значениях a и b.

Еще одно задание:

Найдите расстояние между точками координатной прямой

1.А(9) и В(5)

2.А(9) и В(-5)

На координатной прямой отметим точки А(9) и В(5).

Сосчитаем количество единичных отрезков между данными точками. Их 4, значит расстояние между точками А и В равно 4. Аналогично найдем расстояние между двумя другими точками. Отметим на координатной прямой точки А(9) и В(-5), определим по координатной прямой расстояние между этими точками, расстояние равно 14.

Сравним результаты с предыдущими заданиями.

Модуль разности 9 и 5 равен 4, и расстояние между точками с координатами 9 и 5 тоже равно 4. Модуль разности 9 и минус 5 равен 14, расстояние между точками с координатами 9 и минус 5 равно 14.

Напрашивается вывод:

Расстояние между точками А(а) и В(b) координатной прямой равно модулю разности координат данных точекl a - b l.

Причем расстояние можно найти и как модуль разности b и а, так как количество единичных отрезков не изменится от того, от какой точки мы их считаем.

§ 2 Правило нахождения длины отрезка по координатам двух точек

Найдем длину отрезка CD, если на координатной прямой С(16), D(8).

Мы знаем, что длина отрезка равна расстоянию от одного конца отрезка до другого, т.е. от точки С до точки D на координатной прямой.

Воспользуемся правилом:

и найдем модуль разности координат с и d

Итак, длина отрезка CD равна 8.

Рассмотрим еще один случай:

Найдем длину отрезка MN, координаты которого имеют разные знаки М (20), N (-23).

Подставим значения

мы знаем, что -(-23) = +23

значит, модуль разности 20 и минус 23 равен модулю суммы 20 и 23

Найдем сумму модулей координат данного отрезка:

Значение модуля разности координат и сумма модулей координат в данном случае получились одинаковыми.

Можно сделать вывод:

Если координаты двух точек имеют разные знаки, то расстояние между точками равно сумме модулей координат.

На уроке мы познакомились с правилом нахождения расстояния между двумя точками координатной прямой и научились находить длину отрезка, используя данное правило.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//Автор-составитель Л.А. Топилина. – М.: Мнемозина 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений./Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013.
  4. Справочник по математике - http://lyudmilanik.com.ua
  5. Справочник для учащихся в средней школе http://shkolo.ru

План урока.

Расстояние между двумя точками на прямой.

Прямоугольная (декартова) система координат.

Расстояние между двумя точками на прямой.

Теорема 3. Если А(х) и В(у) - любые две точки, то d - расстояние между ними вычисляется по формуле: d =lу - хl.

Доказательство. Согласно теореме 2 имеем АВ= у - х. Но расстояние между точками А и В равно длине отрезка АВ, те. длине вектора АВ . Следовательно, d = lАВl=lу-хl.

Так как числа у-х и х-у берутся по модулю, то можно писать d =lх-уl. Итак, чтобы найти расстояние между точками на координатной прямой, нужно найти модуль разности их координат.

Пример 4 . Даны точки А(2) и В(-6), найти расстояние между ними.

Решение. Подставим в формулу вместо х=2 и у=-6. Получим, АВ=lу-хl=l-6-2l=l-8l=8.

Пример 5. Построить точку, симметричную точке М(4) относительно начала координат.

Решение. Т.к. от точки М до точки О 4 единичных отрезка, отложенные справа, то, чтобы построить симметричную ей точку, откладываем от точки О 4 единичных отрезка влево, получим точку М" (-4).

Пример 6. Построить точку С(х), симметричную точке А(-4) относительно точки В(2).

Решение. Отметим точки А(-4) и В(2) на числовой прямой. Найдем расстояние между точками по теореме 3, получим 6. Тогда расстояние между точками В и С тоже должно быть равным 6. Откладываем от точки В вправо 6 единичных отрезков, получим точку С(8).

Упражнения. 1) Найти расстояние между точками А и В: а) А(3) и В(11), б) А(5) и В(2), в) А(-1) и В(3), г) А(-5) и В(-3), д) А(-1) и В(3), (Ответ: а)8, б)3, в)4, г)2, д)2).

2) Постройте точку С(х), симметричную точке А(-5) относительно точки В(-1). (Ответ: С(3)).

Прямоугольная (декартова) система координат.

Две взаимно перпендикулярные оси Ох и Оу, имеющие общее начало О и одинаковую единицу масштаба, образуют прямоугольную (или декартову ) систему координат на плоскости .

Ось Ох называется осью абсцисс , а ось Оу - осью ординат . Точка О пересечения осей называется началом координат . Плоскость, в которой расположены оси Ох и Оу, называется координатной плоскостью и обозначается Оху.

Пусть М - произвольная точка плоскости. Опустим из нее перпендикуляры МА и МВ соответственно на оси Ох и Оу. Точки пересечения А и В эитх перпендикуляров с осями называются проекциями точки М на оси координат.

Точкам А и В соответствуют определенные числа х и у - их координаты на осях Ох и Оу. Число х называется абсциссой точки М, число у - ее ординатой .

Тот факт, что точка М имеет координаты х и у, символически обозначают так: М(х,у). При этом первой в скобках указывают абсциссу, а второй - ординату. Начало координат имеет координаты (0,0).

Таким образом, при выбранной системе координат каждой точке М плоскости соответствует пара чисел (х,у) - ее прямоугольные координаты и, обратно, каждой паре чисел (х,у) соответствует, и притом одна, точка М на плоскости Оху такая, что ее абсцисса равна х, а ордината равна у.

Итак, прямоугольная система координат на плоскости устанавливает взаимно однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, которое дает возможность при решении геометрических задач применять алгебраические методы.

Оси координат разбивают плоскость на четыре части, их называют четвертями, квадрантами или координатными углами и нумеруют римскими цифрами I, II, III, IV так, как показано на рисунке (гиперссылка).

На рисунке указаны также знаки координат точек в зависимости от их расположения. (например, в первой четверти обе координаты положительные).

Пример 7. Построить точки: А(3;5), В(-3;2), С(2;-4), D (-5;-1).

Решение. Построим точку А(3;5). Прежде всего введем прямоугольную систему координат. Затем по оси абсцисс отложим 3 единицы масштаба вправо, а по оси ординат - 5 единиц масштаба вверх и через окончательные точки деления проведем прямые, параллельные осям координат. Точка пересечения этих прямых является искомой точкой А(3;5). Остальные точки строятся таким же образом (см. рисунок-гиперссылка).

Упражнения.

    Не рисуя точки А(2;-4), выясните, какой четверти она принадлежит.

    В каких четвертях может находиться точка, если ее ордината положительна?

    На оси Оу взята точка с координатой -5. Каковы ее координаты на плоскости? (ответ: т.к. точка лежит на оси Оу, то ее абсцисса равна 0, ордината дана по условию, итак, координаты точки (0;-5)).

    Даны точки: а) А(2;3), б) В(-3;2), в) С(-1;-1), г) D(x;y). Найдите координаты точек, симметричных им относительно оси Ох. Постройте все эти точки. (ответ: а) (2;-3), б) (-3;-2), в) (-1;1), г) (х;-у)).

    Даны точки: а) А(-1;2), б) В(3;-1), в) С(-2;-2), г) D(x;y). Найдите координаты точек, симметричных им относительно оси Оу. Постройте все эти точки. (ответ: а) (1;2), б) (-3;-1), в) (2;-2), г) (-х;у)).

    Даны точки: а) А(3;3), б) В(2;-4), в) С(-2;1), г) D(x;y). Найдите координаты точек, симметричных им относительно начала координат. Постройте все эти точки. (ответ: а) (-3;-3), б) (-2;4), в) (2;-1), г) (-х;-у)).

    Дана точка М(3;-1). Найдите координаты точек, симметричных ей относительно оси Ох, оси Оу и начала координат. Постройте все точки. (ответ: (3;1), (-3;-1), (-3;1)).

    Определите, в каких четвертях может быть расположена точка М(х;у), если: а)ху>0 , б) ху< 0, в) х-у=0, г) х+у=0. (ответ: а) в первой и третьей, б)во второй и четвертой, в) в первой и третьей, г) во второй и четвертой).

    Определите координаты вершин равностороннего треугольника со стороной, равной 10, лежащего в первой четверти, если одна из вершин его совпадает с началом координат О, а основание треугольника расположено на оси Ох. Сделайте рисунок. (ответ: (0;0), (10;0), (5;5v3)).

    Используя метод координат, определите координаты всех вершин правильного шестиугольника ABCDEF. (ответ: A (0;0), B (1;0), C (1,5;v3/2) , D (1;v3), E (0;v3 ), F (-0,5;v3/2). Указание: примите точку А за начало координат, ось абсцисс направьте от А к В, за единицу масштаба возьмите длину стороны АВ. Удобно провести большие диагонали шестиугольника.)

Урок № /3

ТЕМА: Расстояние между точками координатной прямой

Цель деятельности учителя: создать условия для овладения навыками находить расстояние между точками на координатной прямой, вычисляя модуль разности, координаты середины отрезка.

Планируемые результаты изучения темы:

Личностные: проявляют познавательный интерес к изучению предмета.

Предметные: умеют находить расстояние между точками на координатной прямой, вычисляя модуль разности, координаты середины отрезка.

Метапредметные результаты изучения темы (универсальные учебные действия):

познавательные: ориентируются на разнообразие способов решения задач; умеют обобщать и систематизировать информацию;

регулятивные: учитывают правило в планировании и контроле способа решения;

коммуникативные: считаются с разными мнениями и стремятся к координации различных позиций в сотрудничестве.

Сценарий урока.

I .Орг момент.
Здравствуйте, ребята. Сегодня у на гостим Поприветствуем их!

Садитесь.

У нас не совсем обычный урок. Урок обобщения знаний. Мы должны показать чему мы научились, что нового узнали.

Над какой темой мы работаем в последнее время?(сравнение, сложение рациональных чисел)

Эпиграфом урока я взяла такие слова : Мы в путь за наукой сегодня пойдем

Фантазию в помощь возьмем,

С дороги прямой никуда не свернем

И чтобы скорее нам цели достичь

Должны мы подняться по лестнице ввысь!

2. Актуализация знаний .

Задание «Лестница».

Работа по вариантам, проверка и самооценка

3 Молодцы, продолжаем двигаться вверх за знаниями. Проверим домашнее задание.

1. Найти расстояние между точками координатной прямой:Д/З

а) А(-4) и В(-6); б) А(5) и В(-7); в) А(3) и В(-18).

РЕШЕНИЕ: а) АВ= |-6-(-4) |= |-2|=2

б) АВ =|-7-5|=12

в) АВ = |-18-3 |= 21

2.Найти координаты точек удаленных от точки:

а) А(-8) на 5; б) В(6) на -2,7; в) С(4) на -3,2

Решение: а) -8+5=-3 А 1 (-3) и -8-5=-13 А 2 (-13)

б)6+(-2,7) =3,3 В 1 (3,3) и 6-(-2,7) =8,7 В 2 (8,7)

в) 4+(-3,2) =0,8 С 1 (0,8) 4-(-3,2) = 7,2 С 2 (7,2)

3) Найти координату точки С, середины отрезка, если:

а) А(-12) В (1) б) А(-7) и В(9) в) А(16) и В (-8)

РЕШЕНИЕ:

12+1=-11 Б) -7+9 =2 В) 16+(-8) =8

11: 2=-5,5 2:2=1 8:2 =4

С(-5,5) с(1) С(4)

У вас на столах эталон домашнего задания. Проверьте и поставьте оценку в лист самооценки.

4 . Блиц – опрос :

1. Что такое координатная прямая?

2.Какие правила сравнения рациональных чисел вы знаете?

3.Что такое модуль числа?

4.Как сложить два числа с одинаковыми знаками?

5.Как сложить два числа с разными знаками?

6. Как определить расстояние между точками координатной прямой?

Ну, а теперь покажем, как мы умеем применять свои знания на практике.

5.Исправь ошибки

    12+4 =-16 -12+(-18) =6 9-14=5

    16 +(-10)=6 30 +(-10) =-20 5 –(-3)=2

    6 –(-5) =11 -20 -14 =-34 -2 +7=9

    11-28 =-39 -34 -5 =-29 9 -13=22

Выполнить самопроверку.

    12+4 =--8 -12+(-18) =30 9-14= -5

    16 +(-10)=-26 30 +(-10) =20 5 –(-3)=8

    26 –(-5) =-21 -20 -14 =-34 -2 +7=5

    11-28 =--17 -34 -5 =-41 9 -13=-4

6. Определи расстояние между точками: и найти середину отрезка (по вариантам)

(обмен тетрадями и взаимопроверка.)



7. Ну а теперь мы отдохнем. Глазки наши должны отдохнуть

8.Самостоятельная работа (в тетради) выставление оценки.

    1вариант 2 вариант

    1,5-4,6 0,8 -1,2

    -2,8 +3,8 4-9,4

    0,45 -1 -4,3 +(-1,2) (Слайд 9)

    Цель: проверить умение применять законы сложения для преобразования выражений; развивать познавательный интерес, самостоятельность; воспитывать настойчивость и упорство в достижении цели.


    Найдите значение выражения и согласно полученному результату в соответствии с таблицей раскрасьте гнома. (карточка с гномом остаётся у учащихся как талисман)

    Молодцы ребята!

    Вы справились с заданьями

    И блеснули знаньями.

    А волшебный ключ к ученью -

    Ваше упорство и терпенье!