Способы определения скорости света

Когда мы поворачиваем выключатель, то вся комната сразу же озаряется светом. Кажется, что свету совсем не надо времени, чтобы достигнуть стен. Делались многочисленные попытки определить скорость света. Для этого пытались измерить по точным часам время распространения светового сигнала на большие расстояния (несколько километров). Но эти попытки не дали результатов. Начали думать, что распространение света совсем не требует времени, что свет любые расстояния преодолевает мгновенно. Однако оказалось, что скорость света не бесконечно велика, и эта скорость была в конце концов измерена.

Астрономический метод измерения скорости света

Метод Рёмера

Скорость света впервые удалось измерить датскому ученому О. Рёмеру в 1676 г. Рёмер был астрономом, и его успех объясняется именно тем, что проходимые светом расстояния, которые он использовал для измерений, были очень велики. Это расстояния между планетами Солнечной системы.

Рёмер наблюдал затмения спутников Юпитера - самой большой планеты Солнечной системы. Юпитер в отличие от Земли имеет четырнадцать спутников. Ближайший его спутник - Ио - стал предметом наблюдений Рёмера. Он видел, как спутник проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся, как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками оказался равным 42 ч 28 мин. Таким образом, эта «луна» представляла собой громадные небесные часы, через равные промежутки времени посылавшие свои сигналы на Землю.

Вначале измерения производились в то время, когда Земля при своем движении вокруг Солнца ближе всего подошла к Юпитеру (рис. 1). Такие же измерения, проведенные несколько месяцев спустя, когда Земля удалилась от Юпитера, неожиданно показали, что спутник опоздал появиться из тени на целых 22 мин по сравнению с моментом времени, который можно было рассчитать на основании знания периода обращения Ио.



Рёмер объяснял это так: «Если бы я мог остаться на другой стороне земной орбиты, то спутник всякий раз появлялся бы из тени в назначенное время, наблюдатель, находящийся там, увидел бы Ио на 22 мин раньше. Запаздывание в этом случае происходит от того, что свет употребляет 22 мин на прохождение от места моего первого наблюдения до моего теперешнего положения». Зная запаздывание появления Ио и расстояние, которым оно вызвано, можно определить скорость, разделив это расстояние на время запаздывания. Скорость оказалась чрезвычайно большой, примерно 300.000 км/с . Поэтому-то крайне трудно уловить время распространения света между двумя удаленными точками на Земле. Ведь за одну секунду свет проходит расстояние, большее длины земного экватора в 7,5 раза.

Лабораторные методы измерения скорости света

Метод Физо

Впервые скорость света лабораторным методом удалось измерить французскому физику И. Физо в 1849 г.

В опыте Физо свет от источника, пройдя через линзу, падал на полупрозрачную пластинку 1 (рис.2). После отражения от пластинки сфокусированный узкий пучок направлялся на периферию быстро вращающегося зубчатого колеса. Пройдя между зубцами, свет достигал зеркала 2, находившегося на расстоянии нескольких километров от колеса. Отразившись от зеркала, свет, прежде чем попасть в глаз наблюдателя, должен был пройти опять между зубцами. Когда колесо вращалось медленно, свет, отраженный от зеркала, был виден. При увеличении скорости вращения он постепенно исчезал. В чем же здесь дело? Пока свет, прошедший между двумя зубцами, шел до зеркала и обратно, колесо успевало повернуться так, что на место прорези вставал зубец, и свет переставал быть видимым.

Рисунок. Опыт Физо: свет от источника, пройдя через линзу, попадает на полупрозрачную пластинку.

При дальнейшем увеличении скорости вращения свет опять становился видимым. Очевидно, что за время распространения света до зеркала и обратно колесо успело повернуться настолько, что на место прежней прорези встала уже новая прорезь. Зная это время и расстояние между колесом и зеркалом, можно определить скорость света. В опыте Физо расстояние равнялось 8,6 км и для скорости света было получено значение 313.000 км/с . Зная расстояние D , число зубьев Z , угловую скорость вращения (число оборотов в секунду) n , можно вычислить скорость света С.

Метод Фуко

Фуко (1862 г) успешно осуществил метод, принцип которого еще раньше (1838г) был предложен Араго с целью сравнения скорости света в воздухе со скоростью его в других средах (вода), применив вместо зубчатого диска быстро вращающееся (512 об/с) зеркало. Метод вращающегося зеркала основан на очень тщательных измерениях малых промежутков времени при помощи зеркала. Схема опыта ясна из рис., где S – источник света; R – быстровращающееся зеркало; C – неподвижное вогнутое зеркало, центр кривизны которого совпадает с осью вращения R (поэтому свет, отраженный C, всегда попадает обратно на R); M – полупрозрачное зеркало; L – объектив; E – окуляр; RC – точно измеренное расстояние (база). Пунктиром показаны положения R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через L. Объектив L собирает отраженный пучок в точке S1, а не в точке S, как это бы было при неподвижном зеркале R.

Скорость света устанавливают, измеряя смещение SS.

Рисунок. Определение скорости света методом Фуко.

Свет от источника S направляется при помощи объектива L на вращающееся зеркало R, отражается от него в направлении второго зеркала C и идет обратно, проходя путь

2CR=2D за время τ. Время это оценивается по углу поворота зеркала R, скорость вращения которого точно известна; угол же поворота определяется из измерения смещения зайчика, даваемого возвратившимся светом. Измерения проводятся при помощи окуляра E и полупрозрачной пластинки M; S1 – положение зайчика при неподвижном зеркале R, S11 – при вращении зеркала. Важной особенностью установки Фуко явилось применение в качестве зеркала C вогнутого сферического зеркала, с центром кривизны, лежащим на оси вращения R. Благодаря этому свет, отраженный от R к C, всегда попадал обратно на R; в случае же применения плоского зеркала C это происходило бы лишь при определении взаимной ориентации R, C, когда ось отраженного конуса лучей располагается нормально к C. Фуко выяснил, что световая скорость равна 298000 ± 500 км/сек.

Метод Майкельсона

Рисунок 4. Метод Майкельсона. В центре – вращающееся зеркало.

Уже в 1877 году, в бытность свою офицером ВМС США, Майкельсон начинает усовершенствовать метод измерения скорости света при помощи вращающегося зеркала, предложенного Леоном Фуко. Идеей Майкельсона было применить лучшую оптику и более длинную дистанцию. В 1878 году он произвёл первые измерения на довольно кустарной установке. Майкельсон опубликовал свой результат 299 910±50 км/с в 1879 году. Он и далее усовершенствовал свой метод; он опубликовал в 1883 году значение 299 853±60 км/с .

Приближения геометрической оптики. Закон отражения света. Плоские зеркала.

Сферические зеркала.

Геометрическая оптика – раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Геометрической оптикой называется предельный случай волновой оптики при стремлении длины волны к нулю. Это возможно, когда дифракционные эффекты пренебрежимо малы.


  • В геометрической оптике рассматриваются законы распространения света в прозрачных средах на основе представлений о свете как о совокупности световых лучей – линий, вдоль которых распространяется световая энергия.

  • В оптически изотропной среде световые лучи ортогональны к волновым поверхностям и направлены в сторону внешних нормалей к этим поверхностям.

  • В оптически однородной среде лучи прямолинейны.

  • На границе раздела двух сред они подчиняются законам отражения и преломления.

  • Пучки световых лучей могут пересекаться, не интерферируя и распространяясь, после пересечения, независимо друг от друга.
Законы геометрической оптики.

В основе геометрической оптики лежат несколько простых эмпирических законов:


  1. Закон прямолинейного распространения света

  2. Закон независимого распространения лучей

  3. Закон отражения света

  4. Закон преломления света

  5. Закон обратимости светового луча. Согласно нему луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.
Закон отражения света.

Отражение света – это явление, заключающееся в том, что при падении света из первой среды на границу раздела со второй средой взаимодействие света с веществом приводит к появлению световой волны, распространяющейся от границы раздела обратно в первую среду.

При отражении света распространение его происходит в одной и той же среде. Поэтому отыскание пути, на прохождение которого свет затрачивает минимальное время, вновь сводится к отысканию кратчайшего расстояния между двумя точками при условии соединения их двумя отрезками, концы которых находятся в некоторой точке на отражающей плоскости.

Можно представить себе различные возможные варианты распространения света из точки А в точку В при отражении от плоскости MN , например АС 1 В и АС 2 В. Для отыскания кратчайшего пути построим точку А", расположенную симметрично точке А относительно плоскости MN . Соединив точки С 1 и С 2 с точкой А", замечаем, что из равенства треугольников А"ОС 1 и АОС 1 , А"ОС 2 и АОС 2 следует равенство их сторон А"С 1 и АС 1 , А"С 2 и АС 2 . Поэтому задачу отыскания кратчайшего оптического пути из точки А в точку В с условием отражения от плоскости MN можно заменить задачей нахождения кратчайшего пути из точки А" в точку В с пересечением плоскости MN . Очевидно, что из точки А" в точку В кратчайшим является путь по прямой А"СВ. Из равенства треугольников А"СО и АСО следует равенство углов A " CO и ACO . Так как A " CO = BCN , то выполняется равенство A CO = BCN .

Восстановив перпендикуляр к плоскости MN в точке C падение луча и используя последнее равенство, получим, что угол падения луча ACK равен углу отражения KCB .

– падающий (1) и отраженный луч (3) лежат в одной плоскости с нормалью (N) к отражающей поверхности в точке падения

– угол падения равен углу отражения

Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет.

На границе раздела двух однородных сред лучи отражаются и преломляются (рис.1).

Отраженный (3) и преломленный (2) лучи находятся в одной плоскости с падающим лучом (1) и перпендикуляром к границе раздела двух сред (N).

Угол преломления можно найти по формуле , где и

показатели преломления первой и второй среды.

Плоские зеркала.

Простейшим оптическим устройством, способным создавать изображение предмета, является плоское зеркало . Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зеркальной поверхности. Это изображение является мнимым , так как оно образуется пересечением не самих отраженных лучей, а их продолжений в «зазеркалье».

Ход лучей при отражении от плоского зеркала. Точка S" является мнимым изображением точки S.

Вследствие закона отражения света мнимое изображение предмета располагается симметрично относительно зеркальной поверхности. Размер изображения равен размеру самого предмета.

Сферические зеркала.

Сферическим зеркалом называют зеркально отражающую поверхность, имеющую форму сферического сегмента. Центр сферы, из которой вырезан сегмент, называют оптическим центром зеркала . Вершину сферического сегмента называют полюсом . Прямая, проходящая через оптический центр и полюс зеркала, называется главной оптической осью сферического зеркала. Главная оптическая ось выделена из всех других прямых, проходящих через оптический центр, только тем, что она является осью симметрии зеркала.

Побочная оптическая ось линзы - прямая, проходящая через оптический центр линзы и несовпадающая с главной оптической осью линзы.

Фо кус в оптике, точка, в которой после прохождения оптической системы параллельным пучком лучей пересекаются лучи пучка (или их мысленные продолжения, если система превращает параллельный пучок в расходящийся). Если лучи проходят параллельно оптической оси системы, Ф. находится на этой оси; его называется главным Ф. В идеальной оптической системе все Ф. расположены на плоскости, перпендикулярной оси системы и называемой фокальной плоскостью. В реальной системе Ф. располагаются на некоторой поверхности называемой фокальной поверхностью.


Выпуклые зеркала.

Сферическое зеркало называется выпуклым, если отражение происходит от внешней поверхности сферического сегмента, т. е. если центр зеркала находится к наблюдателю ближе, чем края зеркала.

Главный фокус выпуклого зеркала является мнимым, прямым и уменьшенным. Если на выпуклое зеркало падает пучок лучей, параллельных главной оптической оси, то после отражения в фокусе пересекутся не сами лучи, а их продолжения.


Отражение параллельного пучка лучей от выпуклого зеркала. СF – мнимый фокус зеркала, O – оптический центр; OС – главная оптическая ось.

Фокусное расстояние выпуклого зеркала: , где R – радиус кривизны зеркала.

Вогнутые зеркала.

Если на вогнутое сферическое зеркало падает пучок лучей, параллельный главной оптической оси, то после отражения от зеркала лучи пересекутся в точке, которая называется главным фокусом зеркала F. Расстояние от фокуса до полюса зеркала называют фокусным расстоянием и обозначают той же буквой F. У вогнутого сферического зеркала главный фокус действительный. Он расположен посередине между центром и полюсом зеркала.

Отражение параллельного пучка лучей от вогнутого сферического зеркала. Точки O – оптический центр, P – полюс, F – главный фокус зеркала; OP – главная оптическая ось, R – радиус кривизны зеркала.

Отраженные лучи пересекаются приблизительно в одной точке только в том случае, если падающий параллельный пучок был достаточно узким - параксиальный пучок .

Фокусное расстояние вогнутого зеркала: , где R – радиус кривизны зеркала.

Построение изображения в сферическом зеркале.

Для построения изображения точки в сферическом зеркале в параксиальных лучах можно выбрать любые два луча из трех стандартных:

а) луч, проходящий через центр сферической поверхности зеркала, который после отражения от зеркала опять проходит через центр;

б) луч, падающий на зеркало параллельно оптической оси


и после отражения проходящий через фокус зеркала;

в) луч, проходящий через фокус зеркала и после отражения идущий параллельно оптической оси.

Выпуклое зеркало:


Воспользовавшись этими лучами, построим изображения в некоторых частных случаях. В выпуклом зеркале изображение мнимое, прямое, уменьшенное при любом положении предмета (рис. 4.11).

Положение изображения и его размер можно также определить с помощью формулы сферического зеркала :

Где d - расстояние от предмета до зеркала, f – расстояние от зеркала до изображения. Величины d и f подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов и изображений;
d
В рис. 4.11 F 0, - изображение мнимое. Линейное увеличение сферического зеркала Γ определяется как отношение линейных размеров изображения h" и предмета h. Величине h" удобно приписывать определенный знак в зависимости от того, является изображение прямым (h" > 0) или перевернутым (h"

В рис. 4.11 – изображение прямое, уменьшенное в 4 раза.

Вогнутое зеркало:

Изображение какой-либо точки A предмета в сферическом зеркале можно построить с помощью любой пары стандартных лучей:


  • луч AOC, проходящий через оптический центр зеркала; отраженный луч COA идет по той же прямой;

  • луч AFD, идущий через фокус зеркала; отраженный луч идет параллельно главной оптической оси;

  • луч AP, падающий на зеркало в его полюсе; отраженный луч симметричен с падающим относительно главной оптической оси.

  • луч AE, параллельный главной оптической оси; отраженный луч EFA1 проходит через фокус зеркала.
А) За оптическим центром

Построение изображения в вогнутом сферическом зеркале.

Перечисленные выше стандартные лучи изображены для случая вогнутого зеркала. Все эти лучи проходят через точку A", которая является изображением точки A. Все остальные отраженные лучи также проходят через точку A". Ход лучей, при котором все лучи, вышедшие из одной точки, собираются в другой точке, называется стигматическим . Отрезок A"B" является изображением предмета AB. Аналогичны построения для случая выпуклого зеркала.

F > 0 (зеркало вогнутое); d = 3F > 0 (действительный предмет). По формуле сферического зеркала получаем: следовательно, изображение действительное. Если бы на месте вогнутого зеркала стояло выпуклое зеркало с тем же по модулю фокусным расстоянием, мы получили бы следующий результат:

– следовательно, изображение перевернутое, уменьшенное в 2 раза.

Изображение Действительно, перевёрнутое, уменьшенное.

Б) Между оптическим центром и фокусом

OD – главная оптическая ось, F – главный фокус. Проводим из точки A в точку C луч, параллельный главной оптической оси OD. Затем соединяем точки C и F. Из точки A в точку D проводим ещё один луч. . Получили точку A`. Это изображении точки A.

Изображение является увеличенным, перевёрнутым, действительным.

В) В фокусе

FD – главная оптическая ось. Проводим из точки A в точку C луч, параллельный главной оптической оси FD. Затем соединяем точки C и F. Из точки A в точку D проводим ещё один луч. Как видим прямая CF параллельна прямой DK.

Изображение не получится.

Г) Между зеркалом и фокусом

Полученное изображение является увеличенным, прямым и мнимым.

Закон преломления света

При переходе света из одной прозрачной среды в другую направление света может меняться. Изменение направления света на границе разных сред называется преломлением света .

Закон преломления света:
Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.

Вывод закона:

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Обозначим скорость волны в первой среде через u 1 , а во второй - через u 2 .

Пусть на плоскую границу раздела двух сред (например, из воздуха в воду) падает плоская световая волна (рисунок ниже).

Волновая поверхность АС перпендикулярна лучам А 1 А и В 1 В . Поверхности MN сначала достигнет луч А 1 А. Луч В 1 В достигнет поверхности спустя время

Поэтому в момент, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом AD=u 2 ∆t .

Волновую поверхность преломленной волны можно получить, проведя прямую, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае это прямая BD.

Угол падения α луча равен углу CAB в треугольнике AВС. Следовательно, CB=u 1 ∆t=AB sinα. (1)

Угол преломления β равен углу ABD треугольника ABD. Поэтому

AD=u 2 ∆t=AB sinβ. (2)

Разделив (1) на (2), получим

Показатель преломления

Показатель преломления вещества – величина, равная отношению скорости света в вакууме к скорости света в данной среде.

Показатель преломления зависит от свойств вещества и длины волны излучения.

Его можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды.


Относительный показатель преломления – показатель отношения второй среды относительно первой.

Относительный показатель преломления равен обратному отношению скоростей света в двух средах


При переходе из менее оптически плотной среды в более плотную

угол преломления будет меньше угла падения, при переходе из более оптически плотной среды в менее плотную

угол преломления будет больше угла падения

Полное внутреннее отражение – явление, наблюдаемое при переходе луча в менее плотную среду. При падении под определенным углом свет не выйдет за границу раздела двух сред, а пойдет вдоль нее.

Предельный угол полного отражения находится по формуле

Ход лучей света в плоскопараллельной пластине

Луч света, проходя через пластину, смещается параллельно своему первоначальному направлению.


При рассматривании предметов через плоскопараллельную пластину они будут казаться смещенными.

R – смещение луча

Ход лучей света через трехгранную призму

Проходя через трехгранную призму в воздухе, луч света отклоняется к основанию.

Угол отклонения луча от первоначального направления зависит от преломляющего угла призмы, показателя преломления материала призмы и угла падения:

Линзы. Тонкая сферическая линза. Формула тонкой линзы.

Оптическая линза - прозрачное тело, ограниченное двумя криволинейными поверхностями. В некоторых случаях одна поверхность линзы может быть плоской.

Оптическая линза является основным элементом, оптических систем, осуществляющим собирание или рассеивание пучков излучения. Линзы изготавливаются из материалов, прозрачных для определенных диапазонов длин волн.

Оптические характеристики линзы определяются кривизной ее поверхностей и материалом, из которого она изготовлена.

Различают рассеивающие и собирающие оптические линзы.


Виды линз:
Собирающие :
1 - вогнуто-выпуклая (положительный(выпуклый) мениск)
2 - плоско-выпуклая
3 - двояковыпуклая
Рассеивающие :
4 - выпукло-вогнутая (отрицательный(вогнутый) мениск)
5 - плоско-вогнутая
6 - двояковогнутая

Линзу, у которой толщина пренебрежимо мала по сравнению с радиусами кривизны поверхностей, ограничивающих линзу, называют тонкой . Точки О 1 и О 2 настолько близки, что путь луча внутри линзы бесконечно мал и пространственного смещения луча не происходит. Поэтому можно считать, что лучи испытывают не два преломления, а одно - на плоскости, проходящей через среднюю точку О .

Основные понятия, используемые для описания хода людей через призму:


  • Главная оптическая ось линзы
Главная оптическая ось линзы - прямая, проходящая через центры сферических поверхностей, ограничивающих линзу. Каждая двояковыпуклая сферическая линза имеет одну главную оптическую ось.

  • Оптический центр линзы
Оптический центр линзы - центральная точка О , через которую лучи походят, не изменяя направление.

  • Фокус линзы
Фокус линзы (F ) - точка на главной оптической оси, в которой пересекаются после преломления лучи (или их продолжения), падающие на линзу параллельно главной оптической оси. У любой линзы - два фокуса.

  • Фокусное расстояние
Фокусное расстояние F - расстояние от оптического центра (точка О ) до фокуса. У собирающей линзы F > 0, у рассеивающей - F

  • Фокальная плоскость
Фокальная плоскость - плоскость, проходящая через главный фокус линзы перпендикулярно оптической оси АА" .

  • Оптическая сила линзы
Оптическая сила линзы D - величина, обратная фокусному расстоянию: D =1/F
У собирающей линзы D > 0, у рассеивающей D

Основное свойство линз – способность давать изображения предметов . Изображения бывают прямыми и перевернутыми ,действительными и мнимыми , увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей.

1.Построение изображения в собирающей линзе

2. Построение изображения в рассеивающей линзе

Формула тонкой линзы

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы .

На рисунке построено изображение А"В" предмета АВ , даваемое собирающей линзой. Из подобия треугольников АОВ и ОА"В" , ОСF 2 и F 2 А"В" следует, что

=;

Отсюда получаем выражение, которое называется формулой тонкой линзы

=

Размер изображения, создаваемого линзой, зависит от положения предмета относительно линзы.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы:

Из рисунка следует, что

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l f 1 , где l – расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0– действительное изображение, f 2

– мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах – астрономической трубе Кеплера и земной трубе Галилея

ОПТИЧЕСКИЕ ПРИБОРЫ

Первое экспериментальное подтверждение конечности величины скорости света было дано Рёмером в 1676 г. Он обнаружил, что движение Ио, крупнейшего спутника Юпитера, совершается не совсем регулярно по времени. Было установлено, что нарушается периодичность затмений Ио Юпитером. За полгода наблюдения нарушение периодичности наблюдаемого начала затмения возрастали, достигая величины около 20 мин. Но это почти равно времени, за которое свет проходит расстояние, равное диаметру орбиты движения Земли вокруг Солнца (порядка 17 мин.).

Скорость света, измеренная Рёмером была равна 2

c Рёмера = 214300 км/с. (4)

Метод Рёмера был не очень точен, но именно его расчеты показали астрономам, что для определения истинного движения планет и их спутников необходимо учитывать время распространения светового сигнала.

Аберрация света звезд

В 1725 г. Джеймс Брэдли обнаружил, что звезда γ Дракона, находящаяся в зените (т.е. непосредственно над головой), совершает кажущееся движение с периодом в один год по почти круговой орбите с диаметром равным 40,5 дуговой секунды. Для звезд, видимых в других местах небесного свода, Брэдли также наблюдал подобное кажущееся движение - в общем случае эллиптическое.

Явление, наблюдавшееся Брэдли, называется аберрацией . Оно не имеет ничего общего с собственным движением звезды. Причина аберрации заключается в том, что величина скорости света конечна, а наблюдение ведется с Земли, движущейся по орбите с некоторой скоростью v .

Зная угол α и скорость движения Земли по орбите v , можно определить скорость света c .

Методы измерения, основанные на применении зубчатых колес и вращающихся зеркал

Смотри Берклеевский Курс Физики (БКФ), Механика, стр. 337.

Метод объемного резонатора

Можно очень точно определить частоту, при которой в объемном резонаторе известных размеров укладывается определенное число длин полуволн электромагнитного излучения. Скорость света определяется из соотношения

где λ - длина волны, а ν - частота света (см. БКФ, механика, стр. 340).

Метод Шоран

Смотри БКФ, Механика, стр. 340.

Применение индикатора модулированного света

Смотри БКФ, Механика, стр. 342.

Методы, основанные на независимом определении длины волны и частоты лазерного излучения

В 1972 г. скорость света была определена на основе независимых измерений длины волны λ и частоты света ν . Источником света служил гелий-неоновый лазер (λ = 3.39 мкм). Полученное значение c = λν = 299792458± 1.2 м/с. (cм. Д.В.Сивухин, Оптика, стр. 631).

Независимость скорости света от движения источника или приемника

В 1887 г. знаменитый опыт Майкельсона и Морли окончательно установил, что скорость света не зависит от направления его распространения по отношению к Земле. Тем самым была основательно подорвана существовавшая тогда теория эфира (см. БКФ, Механика, стр. 353).

Баллистическая гипотеза

Отрицательный результат опытов Майкельсона и Морли могла бы объяснить так называемая баллистическая гипотеза, согласно которой скорость света в вакууме постоянна и равна c только относительно источника. Если же источник света движется со скоростью v относительно какой-либо системы отсчета, то скорость света c " в этой системе отсчета векторно складывается из c и v , т.е. c " = c + v (как это происходит со скоростью снаряда при стрельбе из движущегося орудия).

Опровергают эту гипотезу астрономические наблюдения за движением двойных звезд (Ситтер, голландский астроном, 1913 г.).

Действительно, допустим, что баллистическая гипотеза верна. Для простоты предположим, что компоненты двойной звезды вращаются вокруг их центра масс по круговым орбитам в той же плоскости, в которой расположена Земля. Проследим за движением одной из этих двух звезд. Пусть скорость ее движения по круговой орбите равна v . В том положении звезды, когда она удаляется от Земли вдоль соединяющей их прямой, скорость света (относительно Земли) равна c v , а в положении, когда звезда приближается, равна c +v . Если отсчитывать время от момента, когда звезда находилась в первом положении, то свет из этого положения дойдет до Земли в момент t 1 = L /(c v ), где L - расстояние до звезды. А из второго положения свет дойдет в момент t 2 = T /2+L /(c +v ), где T - период обращения звезды

(7)

При достаточно большом L , t 2 <t 1 , т.е. звезда была бы видна одновременно в двух (или нескольких положениях) или даже вращалась бы в противоположном направлении. Но этого никогда не наблюдалось.

Опыт Саде

Саде в 1963 г. выполнил красивый опыт, показывающий, что скорость γ -лучей постоянна независимо от скорости движения источника (см. БКФ, Механика, стр. 372).

В своих опытах он использовал аннигиляцию при пробеге позитронов. При аннигиляции центр масс системы, состоящей из электрона и позитрона, движется со скоростью около (1/2)c , а в результате аннигиляции испускаются два γ -кванта. В случае аннигиляции в неподвижном состоянии оба γ -кванта испускаются под углом 180 ° и их скорость равна c . В случае аннигиляции при пробеге этот угол меньше 180 ° и зависит от скорости позитрона. Если бы скорость γ -кванта складывалась со скоростью центра масс согласно классическому правилу сложения векторов, то γ -квант, движущийся с некоторой составляющей скорости в направлении пробега позитрона, должен был бы иметь скорость бóльшую, чем c , а тот γ -квант, который имеет составляющую скорости в противоположном направлении, должен иметь скорость меньшую, чем c . Оказалось, что при одинаковых расстояниях между счетчиками и пунктом аннигиляции оба γ -кванта достигают счетчиков в одно и то же время. Это доказывает, что и при движущемся источнике оба γ -кванта распространяются с одинаковой скоростью.

Предельная скорость

Опыт Бертоцци 1964 г.

Следующий опыт иллюстрирует утверждение, что нельзя ускорить частицу до скорости, превышающей скорость света c . В этом опыте электроны ускорялись последовательно все более сильными электростатическими полями в ускорителе Ван-де-Граафа, а затем они двигались с постоянной скоростью через пространство, свободное от поля.

Время их полета на известном расстоянии AB, а следовательно и их скорость, измерялись непосредственно, а кинетическая энергия (переходящая в тепло при ударе о мишень в конце пути) измерялась с помощью термопары.

В этом опыте с большой точностью была определена величина ускоряющего потенциала φ . Кинетическая энергия электрона равна

Если через сечение пучка пролетает N электронов в секунду, то мощность, передаваемая алюминиевой мишени в конце их пути, должна быть равна 1,6· 10 –6 N эрг/сек. Это в точности совпадало с непосредственно определенной (с помощью термопары) поглощенной мишенью мощностью. Таким образом подтверждалось, что электроны отдавали мишени всю кинетическую энергию, полученную в ходе их ускорения.

Из этих экспериментов следует, что электроны получали от ускоряющего поля энергию, пропорциональную приложенной разности потенциалов, но их скорость не могла тем не менее увеличиваться беспредельно и приближалась к значению скорости света в вакууме.

Многие другие эксперименты, как и описанный выше, свидетельствуют о том, что c - это верхний предел скорости частиц. Таким образом мы твердо убеждаемся, что c - это максимальная скорость передачи сигнала как с помощью частиц, так и с помощью электромагнитных волн; c - это предельная скорость.

Вывод:

1. Величина c инвариантна для инерциальных систем отсчета.

2. c - максимальная возможная скорость передачи сигнала.

Относительность времени

Уже в классической механике пространство относительно, т.е. пространственные соотношения между различными событиями зависят от того, в какой системе отсчета они описываются. Утверждение о том, что два разновременных события происходят в одном и том же месте пространства или на определенном расстоянии друг относительно друга, приобретает смысл только тогда, когда указано, к какой системе отсчета это утверждение относится. Пример: мячик, подпрыгивающий на столе в купе вагона поезда. С точки зрения пассажира, находящегося в купе, мячик ударяется о стол примерно в одном и том же месте стола. С точки зрения наблюдателя на платформе каждый раз координата мячика другая, поскольку поезд вместе со столом двигается.

Напротив, время является в классической механике абсолютным. Это значит, что время течет одинаково в разных системах отсчета. Например, если какие-нибудь два события являются одновременными для одного наблюдателя, то они будут одновременными и для любого другого. В общем случае промежуток времени между двумя данными событиями одинаков во всех системах отсчета.

Можно, однако, убедиться в том, что понятие абсолютного времени находится в глубоком противоречии с эйнштейновским принципом относительности. Вспомним для этого, что в классической механике, основанной на понятии абсолютного времени, имеет место общеизвестный закон сложения скоростей. Но этот закон в применении к свету гласит, что скорость света c " в системе отсчета K " , движущейся со скоростью V относительно системы K , связана со скоростью света c в системе K соотношением

т.е. скорость света оказывается различной в разных системах отсчета. Это, как мы уже знаем, противоречит принципу относительности и опытным данным.

Таким образом, принцип относительности приводит к результату, что время не является абсолютным. Оно течет по-разному в разных системах отсчета. Поэтому утверждение, что между двумя данными событиями прошел определенный промежуток времени, приобретает смысл, только если при этом указано, к какой системе отсчета это относится. В частности, события, одновременные в некоторой системе отсчета, будут не одновременными в другой системе.

Поясним это на простом примере.

Рассмотрим две инерциальные системы координат K и K " с осями координат xyz и x " y " z " , причем система K " движется относительно системы K вправо вдоль осей x и x " (рис. 8). Пусть из некоторой точки A на оси x " одновременно отправляются сигналы в двух взаимно противоположных направлениях. Поскольку скорость распространения сигнала в системе K " , как и во всякой инерциальной системе, равна (в обоих направлениях) c , то сигналы достигнут равноудаленных от A точек B и C в один и тот же момент времени (в системе K ").

Легко, однако, убедиться в том, что эти два события (приход сигналов в B и C ) будут не одновременными для наблюдателя в системе K . Для него тоже скорость света равна c в обоих направлениях, но точка B движется навстречу свету, так что ее свет достигнет раньше, а точка C удаляется от света и поэтому сигнал придет в нее позже.

Таким образом, принцип относительности Эйнштейна вносит фундаментальные изменения в основные физические понятия. Основанные на повседневном опыте, наши представления о пространстве и времени оказываются лишь приближенными, связанными с тем, что в обыденной жизни мы имеем дело только со скоростями, очень малыми по сравнению со скоростью света.

1 О взаимодействии, распространяющемся от одной частицы к другой, часто говорят как о "сигнале", отправляющемся от первой частицы и "дающем знать" второй о том изменении, которое произошло с первой. О скорости распространения взаимодействий говорят часто как о "скорости сигнала".

2 Период обращения Юпитера вокруг Солнца приблизительно 12 лет, период обращения Ио вокруг Юпитера равен 42 часам.


ЛЕКЦИЯ 2

· Интервал. Геометрия Минковского. Инвариантность интервала.

· Времениподобный и пространственноподобный интервалы.

· Абсолютно будущие события, абсолютно прошедшие события,

абсолютно удаленные события.

· Световой конус.

Интервал

В теории относительности часто используется понятие события . Событие определяется местом, где оно произошло, и временем, когда оно произошло. Таким образом, событие, произошедшее с некоторой материальной частицей, определяется тремя координатами этой частицы и моментом времени, когда это событие произошло: x , y , z и t .

В дальнейшем из соображений наглядности мы будем пользоваться воображаемым четырехмерным пространством, на осях которого откладываются три пространственные координаты и время. В этом пространстве любое событие изображается точкой. Эти точки называются мировыми точками . Всякой частице соответствует некоторая линия - мировая линия в этом четырехмерном пространстве. Точки этой линии определяют координаты частицы во все моменты времени. Если частица покоится или движется равномерно и прямолинейно, то ей соответствует прямая мировая линия.

Выразим теперь принцип инвариантности величины скорости света 1 математически. Для этого рассмотрим две инерциальные системы отсчета K и K " , движущиеся друг относительно друга с постоянной скоростью. Координатные оси выберем так, чтобы оси x и x " совпадали, а оси y и z были бы параллельны осям y " и z ". Время в системах K и K " обозначим через t и t ".

Пусть первое событие состоит в том, что из точки с координатами x 1 , y 1 , z 1 в момент времени t 1 (в системе отсчета K ) отправляется сигнал, распространяющийся со скоростью света. Будем наблюдать из системы отсчета K за распространением этого сигнала. Пусть второе событие состоит в том, что этот сигнал приходит в точку x 2 , y 2 , z 2 в момент времени t 2 . Поскольку сигнал распространяется со скоростью света c , пройденное им расстояние равно c (t 2 –t 1). С другой стороны, это же расстояние равно:

В результате оказывается справедливым следующее соотношение между координатами обоих событий в системе K

Если x 1 , y 1 , z 1 , t 1 и x 2 , y 2 , z 2 , t 2 - координаты каких-либо двух событий, то величина

Геометрия Минковского

Если два события бесконечно близки друг другу, то для интервала ds между ними имеем

ds 2 = c 2 dt 2 –dx 2 –dy 2 –dz 2 . (4)

Форма выражений (3) и (4) позволяет рассматривать интервал, с формальной математической точки зрения, как "расстояние" между двумя точками в воображаемом четырехмерном пространстве (на осях которого откладываются значения x , y , z и произведение ct ). Имеется, однако, существенное отличие в правиле составления этой величины по сравнению с правилами обычной евклидовой геометрии: при образовании квадрата интервала квадрат разности координат по временной оси входит со знаком плюс, а квадраты разностей пространственных координат - со знаком минус. Такую четырехмерную геометрию, определяемую квадратичной формой (4), называют псевдоевклидовой в отличие от обычной, евклидовой, геометрии. Эта геометрия в связи с теорией относительности была введена Г.Минковским.

Инвариантность интервала

Как мы показали выше, если ds = 0 в некоторой инерциальной системе отсчета, то ds " = 0 в любой другой инерциальной системе. Но ds и ds " - бесконечно малые величины одинакового порядка малости. Поэтому в общем случае из этих двух условий следует, что ds 2 и ds " 2 должны быть пропорциональны друг другу:

ds 2 = a ds " 2 . (5)

Коэффициент пропорциональности a может зависеть только от абсолютной величины относительной скорости V обеих инерциальных систем. Он не может зависеть от координат и времени, так как тогда различные точки пространства и моменты времени были бы неравноценны, что противоречит однородности пространства и времени. Он не может также зависеть от направления относительной скорости V , так как это противоречило бы изотропии пространства.

Рассмотрим три инерциальных системы отсчета K , K 1 и K 2 . Пусть V 1 и V 2 - скорости движения систем K 1 и K 2 относительно системы K . Тогда имеем

Но скорость V 12 зависит не только от абсолютных величин векторов V 1 и V 2 , но и от угла α между ними. 2 Между тем последний вообще не входит в левую часть соотношения (8). Поэтому это соотношение может выполняться, лишь если функция a (V ) = const = 1.

Таким образом,

Мы пришли, таким образом, к очень важному результату:

Эта инвариантность и является математическим выражением постоянства скорости света.

Одним из важных свойств, является скорость распространения света в пустоте и других оптических средах. Огромная величина скорости света по сравнению со скоростью распространения различных движущихся объектов, наблюдаемых человеком в практической жизни, ставило много затруднений и при объяснений многих оптических явлений и при практическом определении скорости света. Чтобы показать, как трудно воспринималась человеком возможность перемещения материи, в данном случае света, с огромными скоростями, можно привести пример определения скорости света, предпринятый итальянским ученым Галилео Галилеем, который вместе со своим сотрудником расположились на двух соседних вершинах гор и сигнализировали друг другу светом фонарей. Один участник этого эксперимента открывал крышку фонаря и одновременно включал часы. Второй участник, получив световой сигнал, также открывал фонарь и посылал свет в направлении первого экспериментатора, который, получив ответный сигнал, останавливал часы. Зная расстояние между вершинами гор и время прохождения светом этого расстояния туда и обратно, можно получить скорость света. Нам, конечно ясно, почему эта попытка определения скорости света не дало желаемых результатов.

Вскоре было понятно, что для того, чтобы измерить скорость распространения света с требуемой точностью, необходимо иметь большие расстояния, которые бы проходил свет, во-первых, и необходимо было отсчитывать время с очень высокой точностью, во вторых.

Для получения точных отсчетов времени используют модулирование света, при этом используют три основных метода модуляции:

  • Метод зубчатого колеса,
  • Метод вращающегося зеркала,
  • Метод электрического затвора.

Во всех этих методах время распространения определяется из измерения частоты модуляции.

Рассмотрим вкратце три эти варианта модуляции света на примерах.

Метод Физо. На рис.1.3.1 представлена принципиальная схема установки, используемая в методе Физо, где модуляция светового потока производится вращающимся зубчатым колесом. Свет от источника света 1 конденсорной системой направляется на полупрозрачное зеркало 2 , отразившись от которого проходит между зубьями вращающегося зубчатого колеса 5 . Далее, коллиматорная система 3 направляет пучок лучей на вогнутое зеркало 4 , отразившись от которого, свет проходит обратно по тому же пути до полупрозрачного зеркала 2 . Наблюдение производится глазом человека через окуляр 6 .

Если зубчатое колесо неподвижно, то свет пройдет через промежуток между зубцами, вернется обратно через тот же промежуток. Приведя во вращение зубчатое колесо, и увеличивая скорость вращения, можно добиться, что за время, пока свет идет от колеса 5 до зеркала 4 и обратно колесо повернется на ширину зуба и место промежутка займет зуб. В этом случае свет не будет попадать в окуляр 6 . Еще увеличив скорость вращения колеса можно получить прохождение света обратно через соседний промежуток и т.д.



Физо имел колесо с 720 зубцами и длину двойного пути светового пучка порядка 17 км . Из его опытов скорость света оказалась равной 3.15 . 10 10 см /с . Основная ошибка здесь связана с трудностью фиксирования момента затемнения. Дальнейшие усовершенствование этого метода привели к более точным результатам измерения скорости света.

Метод вращающегося зеркала. Этот метод, предложенный Уитстоном, был использован Фуко в 1960 году. Схема установки показана на рис. 1.3.2. От источника излучения 1 свет, пройдя через полупрозрачное зеркало 2 и объектив 3 направляется вращающимся зеркалом 4 на сферическое зеркало 5 . Отразившись от зеркала 5 , световой поток шел обратно и фокусировался наблюдательной системой в т. A (при неподвижном зеркале 4 ). При вращающемся зеркале за время прохождения светом дважды пути L , зеркало успевало повернуться на некоторый угол и, отраженный от него в обратном ходе световой поток фокусировался в точке B . Измеряя расстояние между A и B , мы получаем угол, на который поворачивается зеркало 4 и, следовательно, зная скорость вращения зеркала, время прохождения светом расстояния . При , найденное значение скорости распространения света оказалось равным 2.98 . 10 10 см /с . Расстояние между A и B было равным только 0.7 мм , и основной источник ошибок лежал в неточности измерения этого расстояния.

Метод электрического затвора Керра. В этом методе в качестве модулирующего устройства выступает ячейка Керра (ячейка Керра, заполненная полярной жидкостью и помещенная между скрещенными николями, пропускает свет только при наложении электрического поля). Схема установки представлена на рис. 1.3.3. Свет от ртутной лампы 1 проходит через затвор Керра на полупрозрачное зеркало 2 , отражается от него вправо и попадает на зеркало 3 . После отражения от зеркала 3 свет в обратном ходе лучей попадает на приемник энергии 8 .

Часть световой энергии проходит сквозь полупрозрачное зеркало и преодолев путь, определяемыми зеркалами 4 , 5 , 6 , 7 и обратно, также попадает на приемник 8 .

Точность этого метода определяется высокой частотой модуляции светового потока, создаваемой ячейкой Керра, находящейся под воздействием высокочастотного электрического поля, и возможностью точного измерения сдвига фаз двух световых потоков, поступающих от зеркала 3 и от зеркала 7 .

Значение, полученное для скорости света, равно . Современное общепринятое значение скорости света в вакууме .

Для оптических сред с показателем преломления скорость света определяется выражением: .




Скорость света и методы ее измерения. Астрономический метод измерения скорости света Впервые осуществлен датчанином Олафом Ремером в 1676 г. Когда Земля очень близко подошла к Юпитеру (на расстояние L 1), промежуток времени между двумя появлениями спутника Ио оказался 42 ч 28 мин; когда же Земля удалилась от Юпитера на расстояние L 2, спутник стал выходить из тени Юпитера на 22 мин. позднее. Объяснение Ремера: это запаздывание происходит за счет того, что свет проходит дополнительное расстояние Δ l= l 2 – l 1.



Лабораторный метод измерения скорости света Метод Физо (1849). Свет падает на полупрозрачную пластину и отражается, проходя через вращающееся зубчатое колесо. Пучок, отраженный от зеркала, может попасть к наблюдателю, только пройдя между зубьями. Если знать скорость вращения зубчатого колеса, расстояние между зубьями и расстояние между колесом и зеркалом, то можно рассчитать скорость света. Метод Фуко – вместо зубчатого колеса вращающаяся зеркальная восьмигранная призма.


С= км/с.




Можно измерить частоту колебаний волны и независимо – длину волны (особенно удобно в радиодиапазоне), а затем рассчитать скорость света по формуле. с=λں По современным данным, в вакууме с=(,2 ± 0,8) м/с.

Презентация на тему "Определение скорости света" по физике для учеников средней школы.

Учитель Крученок Э.Н.

Фрагменты из презентации

О природе света размышляли с древних времен:

  • Пифагор: «Свет – это истечение «атомов» от предметов в глаза наблюдателя»
  • В XVI-XVII веках Рене Декарт, Роберт Гук,
  • Христиан Гюйгенс исходили из того, что распространение света – это распространение волн в среде.
  • Исаак Ньютон выдвигал корпускулярную природу света, т. е. считал, что свет – это излучение телами определенных частиц и их распространение в пространстве.

Астрономический метод измерения скорости света

Впервые скорость света удалось измерить датскому учёному О. Рёмеру в 1676 году. Для измерений он использовал расстояния между планетами Солнечной системы. Рёмер наблюдал затмения спутника Юпитера Ио.

  • Радиус орбиты спутника Ио вокруг Юпитера равен 421600 км, диаметр спутника – 3470 км.
  • Рёмер видел, как спутник проходил перед планетой, а затем погружался в её тень и пропадал из поля зрения. Затем он опять появлялся, как мгновенно вспыхнувшая лампа.

Промежуток времени между двумя вспышками оказался равным 42 часа 28 минут.

  • Вначале измерения проводились в то время, когда Земля при своём движении вокруг Солнца ближе всего подошла к Юпитеру.
  • Такие же измерения через 6 месяцев, когда Земля удалилась от Юпитера на диаметр своей орбиты.
  • Спутник опоздал появиться из тени на 22 минуты, по сравнению с расчётом.
  • Пусть T1 - момент времени, когда Ио выходит из тени Юпитера по часам на Земле, а t1 - реальный момент времени, когда это происходит; тогда:
  • T1 = t1 + S1/c, де S1 - расстояние, которое свет проходит до Земли.
  • ... расчеты

Лабораторные методы измерения скорости света

Впервые скорость света лабораторным методом удалось измерить французскому физику И. Физо в 1849 году.

  • Свет от источника попадал на зеркало, затем направлялся на перифирию быстро вращающегося колеса.
  • Затем достигал зеркала, проходил между зубцами и попадал в глаз наблюдателя.
  • Угловая скорость вращения подбиралась так, чтобы свет после отражения от зеркала за диском попадал в глаза наблюдателю при прохождении через соседнее отверстие.
  • Колесо вращалось медленно - свет был виден.
  • При увеличении скорости - свет постепенно исчезал.
  • При дальнейшем увеличении скорости вращения - свет опять становился видимым

Скорость света приближенно равна 313000 км/с.

Скорость света

  • Максимально возможная скорость для материальных тел.
  • Последние достижения (1978 г.) дали для скорости света следующее значение с=299792,458 км/с=(299792458±1,2)м/с.
  • Во всех других веществах скорость света меньше, чем в вакууме.
  • Квантовая теория света возникла в начале XX века. Она была сформулирована в 1900 году, а обоснована в 1905 году. Основоположниками квантовой теории света являются Планк и Эйнштейн. Согласно этой теории, световое излучение испускается и поглощается частицами вещества не непрерывно, а дискретно, то есть отдельными порциями – квантами света. Квантовая теория как бы в новой форме возродила корпускулярную теорию света, по существу же она явилась развитием единства волновых и корпускулярных явлений.