ЛАБОРАТОРНАЯ РАБОТА - № 217

ИЗУЧЕНИЕ ЗАВИСИМОСТИ СОПРОТИВЛЕНИЯ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ ОТ ТЕМПЕРАТУРЫ

ЦЕЛЬ РАБОТЫ: Исследование температурной зависимости сопротивления металлов и полупроводников, определение температурного коэффициента сопротивления металла и ширины запрещенной зоны полупроводника.

ПРИНАДЛЕЖНОСТИ: Образцы - медная проволока и полупроводник, электронагреватель, термометр, прибор комбинированный цифровой Щ 4300 или вольтметр электронный цифровой ВК7 - 10А.

Основные положения классической теории электропроводности металлов

С позиций классической электронной теории высокая электропроводность металлов обусловлена наличием огромного числа свободных электронов, движение которых подчиняется законам классической механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а взаимодействие их с положительными ионами сводят только к соударениям. Иными словами, электроны проводимости рассматриваются как электронный газ, подобный одноатомному, идеальному газу. Такой электронный газ должен подчи­няться всем законам идеального газа. Следовательно, средняя кинетическая энергия теплового движения электрона будет равна , где - масса электрона, - его среднеквадратичная скорость, k - постоянная Больцмана, Т - термодинамическая температура. Отсюда при Т=300 К среднеквад­ратичная скорость теплового движения электронов »105 м/с.

Хаотичное тепловое движение электронов не может привести к возникнове­нию электрического тока, но под действием внешнего электрического поля в проводнике возникает упо­рядоченное движение электронов со скоростью . Оценить величину можно из соотношения , для j - плотности тока, где - концентрация электронов, e - заряд электрона. Как по­казывает расчет, »8×10-4 м/с. Чрезвычайно малое значение величины по сравнению с величиной объясняется весьма частыми столкновениями электронов с ионами решетки. Каза­лось бы, полученный результат для противоречит тому факту, что передача электрического сигнала на очень большие расстояния происходит практически мгновенно. Но дело в том, что замыкание электрической цепи влечет за собой распро­странение электрического поля со скоростью 3×108 м/с (скорость света). Поэтому упорядоченное движение электронов со скоростью под действием поля возникнет практически сразу же на всем протяжении цепи, что и обеспечивает мгновенную передачу сиг­нала. На базе классической электронной теории был выведен закон электрического тока - закон Ома в диф­фе­ренциальной форме , где g-удельная проводимость, зависящая от природы металла. Электр­оны проводимости, перемещаясь в металле, переносят с собой не только электриче­ский заряд, но и кинетическую энергию беспорядочного теплового движения. Поэтому те метал­лы, кото­рые хорошо проводят электрический ток, являются хорошими проводни­ками тепла. Классическая электронная теория качественно объяснила природу электриче­с­кого сопротивления металлов. Во внешнем поле упорядоченное движение элек­тронов нарушается их соударениями с положительными ионами решетки. Между двумя столкновениями электрон движется ускоренно и приобретает энергию, кото­рую при последующем столкновении отдает иону. Можно считать, что движение электрона в металле происходит с трением, подобным внутреннему трению в газах. Это трение и создает сопротивление металла.

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Основы классической теории
электропроводности
металлов


2.11.
Основные
положения
классической
электронной теории проводимости металлов
Друде – Лоренца.
2.12. Вывод законов Ома, Джоуля-Ленца и
Видемана-Франца на основе теории Друде Лоренца.
2.13.
Затруднения
классической
теории
электропроводности
металлов.
Сверхпроводимость
металлов.
Открытие
высокотемпературной сверхпроводимости.

2.10. Природа носителей тока в металлах.

Для выяснения природы носителей тока в металлах был поставлен ряд опытов.
Опыт Рикке (Riecke C., 1845-1915). В 1901г. Рикке осуществил опыт, в котором
он пропускал ток через стопку цилиндров с тщательно отполированными
торцами Cu-Al-Cu. Перед началом опыта образцы были взвешены с высокой
степенью точности (Δm = ±0,03 мг). Ток пропускался в течение года. За это
время через цилиндры прошел заряд q = 3,5∙106 Кл.
По окончании опыта цилиндры были вновь взвешены. Взвешивание показало, что
пропускание тока не оказало никакого влияния на вес цилиндров. При
исследовании торцевых поверхностей под микроскопом также не было
обнаружено проникновения одного металла в другой. Результаты опыта Рикке
свидетельствовали о том, что носителями тока в металлах являются не
атомы, а какие-то частицы, которые входят в состав всех металлов.
Такими частицами могли быть электроны, открытые в 1897 г. Томсоном (Thomson
J., 1856-1940) в опытах с катодными лучами. Чтобы отождествить носители
тока в металлах с электронами, необходимо было определить знак и величину
удельного
заряда носителей. Это
_
Cu
было осуществлено в
+
опыте Толмена и
Al
Стюарта (Tolman R.,
Cu
1881-1948, Stewart B.,
1828-1887).
Рис.6.1. Опыт Рикке.

Опыт Толмена и Стюарта. Суть опыта, проведенного в 1916 г.,
состояла в определении удельного заряда носителей тока при резком
торможении проводника. В опыте для этой цели использовалась
катушка из медного провода длиной 500 м, которая приводилась в
быстрое вращение (линейная скорость витков составляла 300 м/с), а
затем резко останавливалась. Заряд, протекавший по цепи за время
торможения, измерялся с помощью баллистического гальванометра.
Найденный из опыта удельный заряд носителя тока q / m 1,71 1011 Кл / кг,
оказался очень близким к величине удельного заряда электрона
(e / m 1,76 1011 Кл / кг) , откуда был сделан вывод о том, что ток в металлах
переносится электронами.
_
V
V
a 0 U 0
a
К опыту Толмена-Стюарта с инерцией электронов.
U
ma
d
q

2.11. Основные положения классической электронной теории проводимости металлов Друде – Лоренца.

Исходя из представлений о свободных электронах как основных носителях тока в металлах,
Друде (Drude P., 1863-1906) разработал классическую теорию электропроводности металлов,
которая затем была усовершенствована Лоренцем (Lorentz H., 1853-1928).
Основные положения этой теории сводятся к следующим:
1). Носителями тока в металлах являются электроны, движение которых подчиняется
законом классической механики.
2). Поведение электронов подобно поведению молекул идеального газа (электронный
газ).
3). При движении электронов в кристаллической решетке можно не учитывать
столкновения электронов друг с другом.
4). При упругом столкновении электронов с ионами электроны полностью передают
им накопленную в электрическом поле энергию.
Средняя тепловая скорость хаотического движения электронов при Т ≈ 300К составляет
8kT
8 1,38 10 23 300
10 5 м / с 100км / c
.
31
m
3,14 9,1 10
При включении электрического поля на хаотическое движение электронов накладывается
упорядоченное движение (называемое иногда «дрейфовым»), происходящее с некоторой
средней скоростью u ; возникает направленное
движение
электронов – электрический ток.
Плотность тока определяется по формуле
.
j ne u
Оценки показывают, что при максимально допустимой
плотности тока в металлах j = 107 А/м2
и концентрации носителей 1028 – 1029м-3 ,
. Таким
образом, даже при очень
u 10 3 м / с 1мм
/c
больших плотностях тока средняя скорость упорядоченного движения электронов
u .

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов
Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в
кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным
электрическим полем. Масштабы дрейфа
сильно преувеличены

2.12. Вывод законов Ома, Джоуля-Ленца и Видемана-Франца на основе теории Друде-Лоренца.

Закон Ома.
Ускорение, приобретаемое электроном в электрическом поле
e
На пути свободного пробега
величины
eE
a
.
m
Е
λ максимальная
скорость электрона достигнет
u max
eE
m
,
где τ - время свободного пробега: / .
Среднее значение скорости упорядоченного
движения есть:
u
eE
u
.
2
2m
Подставив это значение в формулу для плотности тока, будем иметь:
ne
j u ne
E ,
2m v
max
2
Полученная формула представляет собой закон Ома в дифференциальной форме:
ne 2
j E ,
2m
где σ – удельная электропроводность металла:
ne 2
ne 2
2m
2m
.

Закон Джоуля - Ленца
Кинетическая энергия электрона, которую он имеет к моменту
соударения с ионом:
2
m 2
mumax
E кин
.
2
2
При столкновении с ионом энергия, полученная электроном в
2
электрическом поле E mumax , полностью передается иону. Число
кин
1
2
соударений одного электрона в единицу времени равно
, где λ
– длина свободного пробега электрона. Общее число столкновений
за единицу времени в единице объема равно N n
. Тогда
количество тепла, выделяющегося в единице объема проводника за
единицу времени будет:
2
2
Q уд N
mumax
ne 2
E
2
2m
.
Последнюю формулу можно представить в виде закона Джоуля-Ленца в
дифференциальной форме:
1
Q уд Е 2 E 2
,
где ρ =1/σ – удельное сопротивление металла.

Закон Видемана-Франца.
Из
опыта
известно,
что
металлы,
наряду
с
высокой
электропроводностью, обладают также высокой теплопроводностью.
Видеман (Wiedemann G., 1826-1899) и Франц (Franz R.,) установили в
1853 г. эмпирический закон, согласно которому отношение
коэффициента
теплопроводности
κ
к
коэффициенту
электропроводности σ для всех металлов приблизительно одинаково и
изменяется пропорционально абсолютной температуре:
.
8
2
,
3
10
Т
Рассматривая электроны как одноатомный
газ, можем на основании
кинетической
теории
газов
написать
для
коэффициента
теплопроводности электронного газа:
1
1
,
nm cv nk
3
2 при постоянном
3 k - удельная теплоемкость одноатомного
где
газа
cv
объеме.
2m
Разделив κ на σ, приходим к закону Видемана-Франца:
.
k
3 T
e и е = 1,6·10-19 Кл, найдем, что
Подставив сюда k = 1,38·10-23 Дж/К
2
,
что очень хорошо согласуется с
2,23 10 8 Т
экспериментальными
данными.

10. 2.13. Затруднения классической теории электропроводности металлов. Сверхпроводимость металлов. Открытие высокотемпературной сверхпроводи

2.13. Затруднения классической теории
электропроводности металлов. Сверхпроводимость
металлов. Открытие высокотемпературной
сверхпроводимости.
Несмотря на достигнутые успехи, классическая электронная теория
проводимости металлов Друде-Лоренца не получила дальнейшего
развития.
Связано это с двумя основными причинами:
1) трудностями, с которыми столкнулась эта теория при объяснении
некоторых свойств металлов;
2) созданием более совершенной квантовой теории проводимости
твердых тел, устранившей затруднения классической теории и
предсказавшей ряд новых свойств металлов.

11.

Выделим основные затруднения теории Друде-Лоренца:
1. Согласно классической теории, зависимость удельного сопротивления
металлов от температуры ~ T в то время, как на опыте в широком
интервале температур вблизи Т≈300К для большинства металлов
наблюдается зависимость ρ ~ Т.
2. Хорошее количественное совпадение с законом Видемана-Франца
оказалось в известной степени случайным. В первоначальном
варианте теории Друде не учитывал распределение электронов по
скоростям. Позже, когда Лоренц учел это распределение, оказалось,
2
что отношение будет
k
2 T
,
e
что значительно хуже согласуется с экспериментом. Согласно же
2
квантовой теории,
2 k
8
T 2,45 10 Т
.
3 e
3. Теория дает неправильное значение теплоемкости металлов. С
учетом теплоемкости электронного газа С=9/2R, а на практике С=3R,
что примерно соответствует теплоемкости диэлектриков.
4. Наконец, теория оказалась полностью неспособной объяснить
открытое в 1911г. Камерлинг-Оннесом (Kamerligh-Onnes H., 18531926)
явления
сверхпроводимости
(полного
исчезновения
сопротивления) металлов при низких температурах, а также
существования остаточного сопротивления, в сильной степени
зависящего от чистоты металла.

12.

1
2
Тк
1-металл с
примесями
2-чистый металл
Т
Зависимость сопротивления металлов от температуры.
(Тк – температура перехода в сверхпроводящее состояние)
Интересно отметить, что в отношении
низкотемпературных сверхпроводников
(металлов) действует правило: металлы с
более высоким удельным сопротивлением
ρ имеют и более высокую критическую
температуру сверхпроводящего перехода
Ткр (см. таблицу).
.
Таблица. Свойства низкотемпературных
сверхпроводников
Металл
ρ
Тк, К
Титан
1,7
0,4
Алюминий
2,5
1,2
Ртуть
9,4
4,1
Свинец
22
7,2

13.

Феноменологическая теория низкотемпературной сверхпроводимости
была создана в 1935г. Ф.и Г. Лондонами (London F., 1900-1954, London
H., 1907-1970), но лишь спустя почти полвека (в 1957г.) явление
сверхпроводимости получило окончательное объяснение в рамках
микроскопической (квантовой) теории, созданной Дж.Бардиным, Л.
Купером и Дж. Шриффером (Bardeen J., Cooper L., Schrieffer J.).
В 1986г. Дж. Беднорцем (Bednorz J.) и К. Мюллером (Müller K.) было
открыто явление высокотемпературной сверхпроводимости в
керамических металлоксидах (лантана, бария и др. элементов),
являющихся диэлектриками при комнатной температуре. Критическая
температура перехода в сверхпроводящее состояние для этих
материалов около 100К.
Теория высокотемпературной сверхпроводимости в настоящее время
находится в стадии разработки и пока далека от своего завершения.
Неясен даже механизм возникновения высокотемпературной
сверхпроводимости.

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал­лов, созданной немецким физиком П. Друде (1863-1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов -опыт Рикке * (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5×10 6 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856-1940) электроны.

*К. Рикке (1845-1915) - немецкий физик.

Для доказательства этого предположения необходимо было определить знак и ве­личину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед,как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879-1944) и Н. Д. Папалекси (1880-1947). Эти опы­ты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881-1948) и ранее шотландским физиком Б. Стюартом (1828-1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных метал­лов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.



Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атом­ными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электро­ны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца, электроны обладают такой же энергией теплового движения,как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T =300 К равна 1,1×10 5 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость áv ñ упорядоченного движения электронов мож­но оценить согласно формуле (96.1) для плотности тока: j =пe áv ñ. Выбрав допустимую плотность тока, например для медных проводов 10 7 А/м 2 , получим, что при концент­рации носителей тока n = 8×10 28 м –3 средняя скорость áv ñ упорядоченного движения электронов равна 7,8×10 –4 м/с. Следовательно, áv ñ<<áu ñ, т. е. даже при очень боль­ших плотностях тока средняя скорость упорядоченного движения электронов, обуслов­ливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость áv ñ + áu ñ можно заменять скоростью теплового движения áu ñ.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (c =3×10 8 м/с). Через время t =l /c (l - длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электро­нов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

Классическая электронная теория металлов развита Друде, Томсоном и Лоренцем. Согласно этой теории электронный газ в металле рассматривается как идеальный газ, и к нему применяют законы классической механики и статистики. В отсутствие внешнего электрического поля свободные электроны в металле совершают хаотическое тепловое движение, не создающее направленного переноса электрического заряда. При наложении электрического поля Е на каждый электрон действует сила

направленная против поля и приводящая к возникновению электрического тока. Движение электрона в кристалле представляет собой сложное движение вследствие постоянного его столкновения с ионами в узлах кристаллической решетки. Между двумя актами столкновения электрон ускоряется. В конце длины свободного пробега λ под действием силы F электрон приобретает скорость направленного движения

где m – масса электрона; а - его ускорение; τ – время движения электрона между двумя столкновениями. τ называется временем свободного пробега . В результате столкновения с ионом скорость электрона обращается в нуль. Поэтому средняя скорость упорядоченного движения равна:

.

Так как ,

то ,

где - средняя скорость теплового движения электронов.

Величина называется подвижностью . Подвижность равна скорости, приобретаемой электроном в электрическом поле, напряженность которого равна Е=1 В/м.

В электрическом токе движение электрона является сложным движением, представляющим собой наложение хаотического теплового движения с упорядоченным движением со скоростью в электрическом поле. Электрическое сопротивление металла обусловлено столкновением электронов с узлами кристаллической решетки и выходом их из общего потока. Чем чаще электрон сталкивается с узлами, тем выше электрическое сопротивление металла.

При средней скорости упорядоченного движения через площадку в 1 м 2 , расположенную перпендикулярно к потоку, за 1 секунду пройдут все электроны, заключенные в параллелепипеде с ребром . Объем этого параллелепипеда равен , число электронов в нем - , n – концентрация электронов в металле. Эти электроны перенесут заряд, равный . Тогда плотность тока в проводнике будет равна

.

Для удельной проводимости имеем

Подставляя в формулу (1) значение u для проводимости металла получим выражение:

Таким образом, согласно классической теории проводимость металла определяется средней длиной свободного пробега электрона в кристалле и средней скоростью теплового движения. Средняя длина свободного пробега равна примерно межатомному расстоянию в решетке. Для выяснения справедливости такого предположения, оценим величину для серебра используя экспериментальные данные по проводимости. Среднюю скорость теплового движения электронов определим из соотношения:

Тогда для температуры Т~300 K получим . Эта величина на два порядка больше, чем межатомное расстояние для серебра. Следовательно, экспериментальные значения проводимости металлов могут быть объяснены, если предположить, что длина свободного пробега электрона намного превышает среднее расстояние между атомами. При своем движении электрон не так часто сталкивается с ионами в узлах кристаллической решетки, как предполагает классическая теория. Прежде чем испытать столкновение электрон пролетает достаточно большое расстояние, равное, примерно 100 межатомным расстояниям в кристалле. Этот факт классическая теория не в состоянии объяснить.

Следующее затруднение классической теории сводится к температурной зависимости электросопротивления. Согласно классической теории средняя длина свободного пробега не зависит от температуры и равна среднему межатомному расстоянию в кристалле. Поэтому, согласно формуле (2) температурная зависимость сопротивления определяется температурной зависимостью скорости теплового движения . Тогда удельное сопротивление согласно классической теории определяется выражением . Однако, экспериментальные данные показывают, что для металлов сопротивление в широком интервале растет линейно с ростом температуры .