ISSN: 2310-7081 (online), 1991-8615 (print) doi: http://dx.doi УДК 517.956.3

ЗАДАЧА О ПРОДОЛЬНЫХ КОЛЕБАНИЯХ УПРУГО ЗАКРЕПЛЕННОГО НАГРУЖЕННОГО СТЕРЖНЯ

А. Б. Бейлин

Самарский государственный технический университет, Россия, 443100, Самара, ул. Молодогвардейская, 244.

Аннотация

Рассматриваются одномерные продольные колебания толстого короткого стержня, закреплённого на концах при помощи сосредоточенных масс и пружин. В качестве математической модели используется начально-краевая задача с динамическими краевыми условиями для гиперболического уравнения четвёртого порядка. Выбор именно этой модели обусловлен необходимостью учитывать эффекты деформации стержня в поперечном направлении, пренебрежение которыми, как показано Рэ-леем, приводит к ошибке, что подтверждено современной нелокальной концепцией изучения колебаний твёрдых тел. Доказано существование ортогональной с нагрузкой системы собственных функций исследуемой задачи и получено их представление. Установленные свойства собственных функций позволили применить метод разделения переменных и доказать существование единственного решения поставленной задачи.

Ключевые слова: динамические краевые условия, продольные колебания, ортогональность с нагрузкой, модель Рэлея.

Введение. В любой работающей механической системе возникают колебательные процессы, которые могут порождаться различными причинами. Колебательные процессы могут быть следствием конструктивных особенностей системы или перераспределения нагрузок между различными элементами штатно работающей конструкции.

Наличие в механизме источников колебательных процессов может затруднить диагностику его состояния и даже привести к нарушению режима его работы, а в некоторых случаях и к разрушению. Различные проблемы, связанные с нарушением точности и работоспособности механических систем в результате вибрации некоторых их элементов, на практике часто решаются экспериментально.

Вместе с тем колебательные процессы могут быть весьма полезными, например, для обработки материалов, сборки и разборки соединений . Ультразвуковые колебания позволяют не только интенсифицировать процессы резания (сверления, фрезерования, шлифования и т. д.) материалов с высокой твёрдостью (вольфрамосодержащих, титанокарбидных сталей и т. п.),

© 2016 Самарский государственный технический университет. Образец для цитирования

Бейлин А. Б. Задача о продольных колебаниях упруго закрепленного нагруженного стержня // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2016. T. 20, № 2. С. 249258. doi: 10.14498/vsgtu1474. Сведения об авторе

Александр Борисович Бейлин (к.т.н, доц.; [email protected]), доцент, каф. автоматизированных станочных и инструментальных систем.

но в некоторых случаях стать единственно возможным методом обработки хрупких материалов (германий, кремний, стекло и т. д.) . Элемент устройства (волновод), который передаёт ультразвуковые колебания от источника (вибратора) до инструмента, называется концентратором и может иметь различную форму: цилиндрическую, коническую, ступенчатую, экспоненциальную и т. д. . Его предназначение - донести до инструмента колебания нужной амплитуды.

Таким образом, следствия протекания колебательных процессов могут быть различными, как и причины, их вызывающие, поэтому естественно возникает необходимость теоретического изучения процессов колебания. Математическая модель распространения волн в относительно длинных и тонких твёрдых стержнях, в основе которой лежит волновое уравнение второго порядка, хорошо изучена и давно стала классикой . Однако, как показано Рэлеем , эта модель не вполне соответствует исследованию колебаний толстого короткого стержня, тогда как многие детали реальных механизмов можно интерпретировать как короткие и толстые стержни. В этом случае следует учитывать деформации стержня и в поперечном направлении. Математическая модель продольных колебаний толстого короткого стержня, в которой учтены эффекты поперечного движения стержня, называется стержнем Рэлея и базируется на гиперболическом уравнении четвёртого порядка

^ ^- IX (а(х) ё)- дх (ь(х))=; (хЛ (1)

коэффициенты которого имеют физический смысл :

д(х) = р(х)А(х), а(х) = А(х)Е(х), Ь(х) = р(х)и2(х)1р (х),

где А(х) -площадь поперечного сечения, р(х) -массовая плотность стержня, Е(х) -модуль Юнга, V(х) - коэффициент Пуассона, 1Р(х) -полярный момент инерции, и(х,Ь) - продольные смещения, подлежащие определению.

Идеи Рэлея нашли своё подтверждение и развитие в современных работах, посвященных процессам колебаний, а также теории пластичности. В обзорной статье обоснованы недостатки классических моделей, описывающих состояние и поведение твёрдых тел при нагрузке, в которых априори тело считается идеальным континуумом. Современный уровень развития естествознания требует построения новых моделей, адекватно описывающих исследуемые процессы, а разработанные в последние несколько десятилетий математические методы дают эту возможность. На этом пути в последнюю четверть прошлого века был предложен новый подход к изучению многих физических процессов, в том числе и упомянутых выше, основанный на понятии нелокальности (см. статью и список литературы в ней). Один из классов нелокальных моделей, выделенных авторами, назван «слабо нелокальными». Математические модели, принадлежащие этому классу, могут быть реализованы введением в уравнение, описывающее некоторый процесс, производных высокого порядка, позволяющих учитывать в некотором приближении взаимодействие внутренних элементов объекта изучения. Таким образом, модель Рэлея актуальна и в наше время.

1. Постановка задачи. Пусть концы стержня х = 0, х = I прикреплены к неподвижному основанию при помощи сосредоточенных масс Ы\, М2 и пружин, жёсткости которых К\ и К2. Будем считать, что стержень представляет собой тело вращения относительно оси 0х ив начальный момент времени находится в покое в положении равновесия. Тогда мы приходим к следующей начально-краевой задаче.

Задача. Найти в области Qт = {(0,1) х (0, Т) : 1,Т < те} "решение уравнения (1), удовлетворяющее начальным данным

и(х, 0) = (р(х), щ(х, 0) = ф(х) и граничным условиям

а(0)их(0, г) + ь(0)илй(0, г) - к^(0, г) - М1ии(0, г) = 0, а(1)их(1, г) + Ъ(1)ихы(1, г) + К2и(1, г) + М2иы(1, г) = 0. ()

В статье рассмотрены некоторые частные случаи задачи (1)-(2) и приведены примеры, в которых коэффициенты уравнения имеют явный вид и М\ = М2 = 0. В статье доказана однозначная слабая разрешимость поставленной задачи в общем случае.

Условия (2) обусловлены способом закрепления стержня: его концы прикреплены к неподвижным основаниям с помощью некоторых приспособлений, имеющих массы М\, М2, и пружин с жёсткостями К1, К2 соответственно. Наличие масс и учёт поперечных смещений приводит к условиям вида (2), содержащим производные по времени. Краевые условия, в которые входят производные по времени, называются динамическими. Они могут возникать в различных ситуациях, простейшие из которых описаны в учебнике , а гораздо более сложные -в монографии .

2. Изучение собственных колебаний стержня. Рассмотрим однородное уравнение, соответствующее уравнению (1). Так как коэффициенты зависят только от х, можно разделить переменные, представив и(х,г) = X(х)Т(г). Получим два уравнения:

т""(г) + \2т (г) = 0,

((а(х) - Л2Ъ(х))Х"(х))" + Л2дХ(х) = 0. (3)

Уравнение (3) сопровождается краевыми условиями

(а(0) - \2Ъ(0))Х"(0) - (К1 - \2М1)Х(0) = 0,

(а(1) - \2Ъ(1))Х"(1) + (К2 - \2М2)Х(I) = 0. (4)

Таким образом, мы пришли к задаче Штурма-Лиувилля, которая отличается от классической тем, что спектральный параметр Л входит в коэффициент при старшей производной уравнения, а также в краевые условия. Это обстоятельство не позволяет ссылаться на известные из литературы результаты, поэтому нашей ближайшей целью является изучение задачи (3), (4). Для успешной реализации метода разделения переменных нам нужна информация о существовании и расположении собственных чисел, о качественных

свойствах собственных функций: обладают ли они свойством ортогональности?

Покажем, что Л2 > 0. Предположим, что это не так. Пусть X(х) -собственная функция задачи (3), (4), соответствующая значению Л = 0. Умножим (3) на X(х) и проинтегрируем полученное равенство по промежутку (0,1). Интегрируя по частям и применяя краевые условия (4), после элементарных преобразований получим

1(0) - Л2Ъ(0))(а(1) - Л2Ъ(1)) I (дХ2 + ЪХ"2)йх+

Ы\Х 2(0) + М2Х 2(1)

I аХ"2<1х + К\Х2(0) + К2Х2(1). Jo

Заметим, что из физического смысла функции а(х), Ъ(х), д(х) положительны, Кг, Мг неотрицательны. Но тогда из полученного равенства следует, что Х"(х) = 0, Х(0) = Х(1) = 0, следовательно, Х(х) = 0, что противоречит сделанному предположению. Стало быть, и предположение о том, что нуль есть собственное число задачи (3), (4) неверно.

Представление решения уравнения (3) зависит от знака выражения а(х) - - Л2Ъ(х). Покажем, что а(х)-Л2Ъ(х) > 0 Ух е (0,1). Зафиксируем произвольно х е (0,1) и найдём значения в этой точке функций а(х), Ъ(х), д(х). Запишем уравнение (3) в виде

Х"(х) + VХ (х) = 0, (5)

где мы обозначили

в выбранной фиксированной точке, а условия (4) запишем в виде

Х"(0) - аХ (0) = 0, Х"(1) + вХ (I) = 0, (6)

где а, в легко вычисляются.

Как известно, классическая задача Штурма-Лиувилля (5), (6) имеет счётное множество собственных функций при V > 0, откуда в силу произвольности х следует нужное неравенство.

Собственные функции задачи (3), (4) обладают свойством ортогональности с нагрузкой , выраженным соотношением

I (дХт(х)Хп(х) + ЪХ"т(х)Х"п(х))<х+ ■)о

М1Хт(0)Хп(0) + М2Хт(1)Хп (I) = 0, (7)

которое можно получить стандартным способом (см., например, ), реализация которого в случае рассматриваемой задачи связана с элементарными, но кропотливыми вычислениями. Приведём кратко его вывод, опустив аргумент функций Хг(х) во избежание громоздкости.

Пусть Лт, Лп - различные собственные числа, Хт, Хп - соответствующие им собственные функции задачи (3), (4). Тогда

{(а - Л2тЪ)Х"т)" + Л2тдХт = 0, {(а - Л2пЪ)Х"п)" + Л2пдХп = 0.

Умножим первое из этих уравнений на Хп, а второе на Хт и вычтем из первого второе. После элементарных преобразований получим равенство

(Лт - Лп)ЯХтХп = (аХтХП)" - ЛП(ЪХтХ"п)" - (аХ"тХп)" + Лт(ЪХтХп)",

которое проинтегрируем по промежутку (0,1). В результате, учитывая (4) и сокращая на (Лт - Лп), получим соотношение (7).

Доказанные утверждения о свойствах собственных чисел и собственных функций задачи Штурма-Лиувилля (3), (4) позволяют применить для отыскания решения поставленной задачи метод разделения переменных.

3. Разрешимость задачи. Обозначим

С(СТ) = {и: и е С(Ст) П С2(Ст), иихх е С^т)}.

Теорема 1. Пусть а,Ъ е С1 , д е С. Тогда существует не более одного решения и е С^т) задачи (1), (2).

Доказательство. Предположим, что существует два различных решения задачи (1), (2), и1(х,г) и и2(х,г). Тогда, в силу линейности задачи, их разность и = и1 - и2 является решением однородной задачи, соответствующей (1), (2). Покажем, что её решение тривиально. Предварительно заметим, что из физического смысла коэффициентов уравнения и краевых условий функции а, Ъ, д положительны всюду в Qт, а М^, К^ неотрицательны.

Умножив равенство (1) на щ и проинтегрировав по области Qт, где т е и произвольно, после несложных преобразований получим

/ (ди2(х,т) + аи2х(х,т) + ЪиХл(х,т))йх+ ./о

К1и2(0, т) + М1и2(0, т) + К2и2(1, т) + М2и2(1, т) = 0,

откуда в силу произвольности т сразу вытекает справедливость утверждения теоремы. □

Доказательство существования решения проведём для случая постоянных коэффициентов.

Теорема 2. Пусть <р е С2, <р(0) = <р(1) = (0) = ц>"(\) = 0, имеет кусочно непрерывную производную третьего порядка в (0,1), ф е С 1, ф(0) = ф(1) =0 и имеет кусочно непрерывную производную второго порядка в (0,1), f е С(С^т), тогда решение задачи (1), (2) существует и может быть получено в виде суммы ряда по собственным функциям.

До к а з а т е л ь с т в о. Будем, как обычно, искать решение задачи в виде суммы

где первое слагаемое - решение поставленной задачи для однородного уравнения, соответствующего (1), второе - решение уравнения (1), удовлетворяющее нулевым начальным и граничным условиям. Воспользуемся результатами проведённых в предыдущем пункте исследований и запишем общее решение уравнения (3):

X(x) = Сг cos A J-+ C2 sin Aw-^rrx.

\¡ a - A2b \¡ a - A2b

Применив краевые условия (4), приходим к системе уравнений относительно Cj!

(a - A2b)c2 - (Ki - A2Mi)ci = 0,

(-A(a - A2b) sin Ayja-A¡bl + (K - A2M2) cos A^O-A^l) ci+

Приравнивая нулю ее определитель, получаем спектральное уравнение

ctg= {а - A4)A2" - (K - A?Mí)(K2 - A"M). (8)

ь Va - A2b A^q(a - A2b)(Ki + K2 - A2(Mi + M2))

Выясним, имеет ли это трансцендентное уравнение решения. Для этого рассмотрим функции, стоящие в левой и правой его частях, и исследуем их поведение. Не слишком ограничивая общность, положим

Mi = M2 = M, Кг = K2 = K,

что позволит слегка упростить необходимые вычисления. Уравнение (8) принимает вид

х I q , Aja - A2b Jq К - A2M ctg A\Z-^l =

a - A2b 2(K - A2M) 2А^^0-А2Ь" Обозначим

и запишем в новых обозначениях спектральное уравнение!

aqlß Kql2 + ß2 (Kb - aM)

2Kql2 + 2^2(Kb - aM) 2/j.aql

Анализ функций левой и правой частей последнего уравнения позволяет утверждать, что существует счётное множество его корней и, стало быть, счётное множество собственных функций задачи Штурма-Лиувилля (3), (4), которые с учетом соотношения, полученного из системы относительно c¿, можно выписать

v / л л I q K - х2пм. л i q

Xn(x) = COS XnJ-гутx + ----sin XnJ-гтутX.

V a - A2b AnVa - ftb^q V a - A2b

Теперь перейдём к отысканию решения, удовлетворяющего и начальным условиям. Решение задачи для однородного уравнения мы теперь легко найдём в виде ряда

u(x,t) = ^ Tn(t)Xn(x),

коэффициенты которого можно найти из начальных данных, пользуясь свойством ортогональности функций Xn(x), норма которых может быть получена из соотношения (7):

||X||2 = f (qX2 + bX%)dx + MiX2(0) + M2x2(l). ■Jo

Процесс нахождения функции v(x,t) также является, по существу, стандартным, но мы всё же заметим, что, отыскивая решение в традиционном виде

v(x,t) = ^ Tn(t)Xn(x),

мы получаем два уравнения. Действительно, учитывая вид собственных функций, уточним структуру ряда, в виде которого мы ищем решение:

j(x,t) = ^ (Vn(t)cos Xn^J a b x+

Wn(t) K-XnM~ sin Х^ГАягx). (9)

v JXnVa - xnb^q V a - xn "

Для выполнения нулевых начальных условий у(х, 0) = у^х, 0) = 0 потребуем, чтобы Уп(0) = УП(0) = 0, Шп(0) = Ш(0) = 0. Разложив f(х,г) в ряд Фурье по собственным функциям Хп(х), найдём коэффициенты ¡п(Ь) и дп(Ь). Подставив (9) в уравнение (1), записанное относительно у(х,Ь), после ряда преобразований получим уравнения для отыскания Уп(Ь) и Шп(Ь):

уц® + >&пЮ =

™ + xn Wn (<) = Xn (-a-iKrW g

Учитывая начальные условия Уп(0) = У,(0) = 0, Шп(0) = Ш,(0) = 0, приходим к задачам Коши относительно каждой из функций Уп(Ь) и Шп(Ь), однозначная разрешимость которых гарантирована условиями теоремы. Свойства начальных данных, сформулированные в теореме, не оставляют сомнений в сходимости всех рядов, возникших в ходе наших исследований и, стало быть, в существовании решения поставленной задачи. □

Заключение. Доказано существование ортогональной с нагрузкой системы собственных функций исследуемой задачи и получено их представление.

Установленные свойства собственных функций позволили доказать существование единственного решения поставленной задачи. Отметим, что полученные в статье результаты могут быть использованы как для дальнейших теоретических исследований задач с динамическими граничными условиями, так и для практических целей, а именно для расчёта продольных колебаний широкого круга технических объектов.

Александр Борисович Бейлин: http://orcid.org/0000-0002-4042-2860

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Нерубай М. С., Штриков Б. Л., Калашников В. В. Ультразвуковая механическая обработка и сборка. Самара: Самарское книжное изд-во, 1995. 191 с.

2. Хмелёв В. Н., Барсуков Р. В., Цыганок С. Н. Ультразвуковая размерная обработка материалов. Барнаул: Алтайский технический ун-т им. И.И. Ползунова, 1997. 120 с.

3. Кумабэ Д. Вибрационное резание. М.: Машиностроение, 1985. 424 с.

4. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 2004. 798 с.

5. Стретт Дж. В. Теория звука. Т. 1. М.: ГИТТЛ, 1955. 504 с.

6. Rao J. S. Advanced Theory of Vibration: Nonlinear Vibration and One Dimensional Structures. New York: John Wiley & Sons, Inc., 1992. 431 pp.

7. Федотов И. А., Полянин А. Д., Шаталов М. Ю. Теория свободных и вынужденных колебаний твердого стержня, основанная на модели Рэлея// ДАН, 2007. Т. 417, №1. С. 56-61.

8. Bazant Z., Jirasek M. Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress// J. Eng. Mech., 2002. vol.128, no. 11. pp. 1119-1149. doi: 10.1061/(ASCE) 0733-9399(2002)128:11(1119).

9. Бейлин А. Б., Пулькина Л. С. Задача о продольных колебаниях стержня с динамическими граничными условиями// Вестн. СамГУ. Естественнонаучн. сер., 2014. №3(114). С. 9-19.

10. Корпусов М. О. Разрушение в неклассических волновых уравнениях. М.: URSS, 2010. 237 с.

Поступила в редакцию 10/II/2016; в окончательном варианте - 18/V/2016; принята в печать - 27/V/2016.

Vestn. Samar. Gos. Techn. Un-ta. Ser. Fiz.-mat. nauki

2016, vol. 20, no. 2, pp. 249-258 ISSN: 2310-7081 (online), 1991-8615 (print) doi: http://dx.doi.org/10.14498/vsgtu1474

MSC: 35L35, 35Q74

A PROBLEM ON LONGITUDINAL VIBRATION OF A BAR WITH ELASTIC FIXING

Samara State Technical University,

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.

In this paper, we study longitudinal vibration in a thick short bar fixed by point forces and springs. For mathematical model we consider a boundary value problem with dynamical boundary conditions for a forth order partial differential equation. The choice of this model depends on a necessity to take into account the result of a transverse strain. It was shown by Rayleigh that neglect of a transverse strain leads to an error. This is confirmed by modern nonlocal theory of vibration. We prove existence of orthogonal with load eigenfunctions and derive representation of them. Established properties of eigenfunctions make possible using the separation of variables method and finding a unique solution of the problem.

Keywords: dynamic boundary conditions, longitudinal vibration, loaded orthogonality, Rayleigh"s model.

Alexander B. Beylin: http://orcid.org/0000-0002-4042-2860

1. Nerubai M. S., Shtrikov B. L., Kalashnikov V. V. Ul"trazvukovaia mekhanicheskaia obrabotka i sborka . Samara, Samara Book Publ., 1995, 191 pp. (In Russian)

2. Khmelev V. N., Barsukov R. V., Tsyganok S. N. Ul"trazvukovaia razmernaia obrabotka materialov . Barnaul, 1997, 120 pp. (In Russian)

3. Kumabe J. Vibration Cutting. Tokyo, Jikkyou Publishing Co., Ltd., 1979 (In Japanese).

4. Tikhonov A. N., Samarsky A. A. Uravneniia matematicheskoi fiziki . Moscow, Nauka, 2004, 798 pp. (In Russian)

5. Strutt J. W. The theory of sound, vol. 1. London, Macmillan and Co., 1945, xi+326 pp.

6. Rao J. S. Advanced Theory of Vibration: Nonlinear Vibration and One Dimensional Structures. New York, John Wiley & Sons, Inc., 1992, 431 pp.

Beylin A.B. A problem on longitudinal vibration of a bar with elastic fixing, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki , 2016, vol. 20, no. 2, pp. 249-258. doi: 10.14498/vsgtu1474. (In Russian) Author Details:

Alexander B. Beylin (Cand. Techn. Sci.; [email protected]), Associate Professor, Dept. of Automation Machine Tools and Tooling Systems.

7. Fedotov I. A., Polyanin A. D., Shatalov M. Yu. Theory of free and forced vibrations of a rigid rod based on the Rayleigh model, Dokl. Phys., 2007, vol.52, no. 11, pp. 607-612. doi: 10.1134/S1028335807110080.

8. Bazant Z., Jirasek M. Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress, J. Eng. Mech., 2002, vol.128, no. 11, pp. 1119-1149. doi: 10.1061/(ASCE) 0733-9399(2002)128:11(1119).

9. Beylin A. B., Pulkina L. S. A promlem on longitudinal vibrations of a rod with dynamic boundary conditions, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2014, no. 3(114), pp. 919 (In Russian).

10. Korpusov M. O. Razrushenie v neklassicheskikh volnovykh uravneniiakh . Moscow, URSS, 2010, 237 pp. (In Russian)

Received 10/II/2016;

received in revised form 18/V/2016;

Стержнем называют тело, один из размеров которого, называемый продольным, значительно превышает его размеры в плоскости, перпендикулярной к продольному направлению, т.е. поперечные размеры. Основным свойством стержня является сопротивление, оказываемое продольному сжатию (растяжению) и изгибу. Это свойство коренным образом отличает стержень от струны, которая не растягивается и не сопротивляется изгибу. Если плотность материала стержня во всех его точках одинакова, то стержень называют однородным.

Обычно в качестве стержней рассматриваются протяженные тела, ограниченные замкнутой цилиндрической поверхностью. В этом случае площадь поперечного сечения остается постоянной. Мы будем изучать поведение именно такого однородного стержня длины l , предполагая, что он подвержен только сжатию или растяжению, подчиняясь при этом закону Гука. При изучении малых продольных деформаций стержня обычно принимается так называемая гипотеза плоских сечений. Она заключается в том, что поперечные сечения, перемещаясь при сжатии или растяжении вдоль стержня, остаются плоскими и параллельными друг другу.

Направим ось x вдоль продольной оси стержня (Рис. 19) и будем считать, что в начальный момент времени концы стержня находятся в точках x=0 и x=l . Возьмем произвольное сечение стержня с координатой x . Обозначим через u (x , t ) смещение этого сечения в момент времени t , тогда смещение сечения с координатой в тот же момент времени будет равно

Тогда относительное удлинение стержня в сечении x будет равно

Сила сопротивления этому удлинению по закону Гука будет равна

где E – модуль упругости материала стержня (модуль Юнга), а S – площадь поперечного сечения. На границах участка стержня длиной dx на него действуют силы T x и T x + dx , направленные вдоль оси x . Результирующая эти их сил будет равна

,

а ускорение рассматриваемого участка стержня равно , тогда уравнение движения этого участка стержня будет иметь вид:

, (67)

где ρ – плотность материала стержня. Если эта плотность и модуль Юнга, постоянны, то можно ввести величину через и, поделив обе части уравнения на Sdx , окончательно получить уравнение продольных колебаний стержня в отсутствии внешних сил

(68)

Это уравнение по форме совпадает с уравнением поперечных колебаний струны и методы решения для него те же, однако, коэффициентом a в этих уравнениях обозначены разные величины. В уравнении струны величина a 2 представляет дробь,в числителе которой стоит постоянная сила натяжения струны – Т , а в знаменателе линейная плотность ρ , а в уравнении струныв числители стоит модуль Юнга, а в знаменателе – объемная плотность материала стержня ρ . Отсюда и физический смысл величины a в этих уравнениях разный. Если для струны этот коэффициент является скоростью распространения малого поперечного смещения, то для стержня он является скоростью распространения малого продольного растяжения или сжатия и называется скоростью распространением звука , поскольку именно с этой скоростью будут распространяться по стержню малые продольные колебания, представляющие собой звук.



Для уравнения (68) задаются начальные условия, которые определяют смещение и скорость смещения любого сечения стержня в начальный момент времени:

Для ограниченного стержня задаются условия закрепления или приложения силы на его концах в виде граничных условий 1-го, 2-го и 3-го рода.

Граничные условия первого рода задают продольное перемещение на концах стержня:

Если концы стержня закреплены неподвижно, то в условиях (6) . В этом случае, так же как и в задаче о колебании защемленной струны применим метод разделения переменных.

В граничных условиях II рода на концах стержня задаются упругие силы, образующиеся в результате деформации по закону Гука в зависимости от времени. Согласно формуле (66) эти силы с точностью до постоянного множителя равны производной u x , поэтому на концах и задаются эти производные как функции времени:

Если один из концов стержня свободен, то на этом конце u x = 0.

Граничные условия третьего рода могут быть представлены как условия, при которых к каждому концу стержня прикреплена пружина, другой конец которой перемещается вдоль оси по заданному закону времени θ (t ), как это изображено на Рис. 20. Эти условия могут быть записаны следующим образом

, (72)

где k 1 и k 2 – жесткости пружин.



Если на стержень вдоль оси действует ещё и внешняя сила p (x , t ), рассчитанная на единицу объема, то вместо уравнения (50) следует записать неоднородное уравнение

,

Которое, после деления на примет вид

, (73)

где . Уравнение (73) представляет собой уравнение вынужденных продольных колебаний стержня, которое решается по аналогии с уравнением вынужденных колебаний струны.

Замечание. Следует заметить, что и струна и стержень являются моделями реальных тел, которые в действительности могут проявлять как свойства струны, так и стержня, в зависимости от условий, в которых они находятся. Кроме того, в полученных уравнениях не учитываются силы сопротивления окружающей среды и силы внутреннего трения, в результате чего эти уравнения описывают незатухающие колебания. Для учета эффекта затухания в простейшем случае используется диссипативная сила, пропорциональная скорости и направленная в сторону, противоположную движению, т.е. скорости. В результате уравнение (73) принимает вид

(74)

В этом параграфе нами будет рассмотрена задача о продольных колебаниях однородного стержня. Стержень - это тело цилиндрической (в частности, призматической) формы, для растяжения или сжатия которого надо приложить известное усилие. Мы будем считать, что все силы действуют вдоль оси стержня и каждое из поперечных сечений стержня (рис. 23) перемещается поступательно только вдоль оси стержня.

Обычно это предположение оправдывается, если поперечные размеры стержня малы по сравнению с его длиной, а силы, действующие вдоль оси стержня, сравнительно невелики. На практике продольные колебания возникают чаще всего тогда, когда стержень предварительно немного растягивается или, наоборот, сжимается, а затем предоставляется самому себе. В этом случае в нем возникают свободные продольные колебания. Выведем уравнения этих колебаний.

Направим ось абсцисс по оси стержня (рис. 23); в состоянии покоя концы стержня имеют соответственно абсциссы Рассмотрим сечение ; - его абсцисса в состоянии покоя.

Смещение этого сечения в любой момент времени t будет характеризоваться функцией для отыскания которой мы и должны составить дифференциальное уравнение. Найдем прежде всего относительное удлинение участка стержня, ограниченного сечениями Если абсцисса сечения в состоянии покоя , то смещение этого сечения в момент времени t с точностью до бесконечно малых высшего порядка равно

Поэтому относительное удлинение стержня в сечении с абсциссой в момент времени t равно

Считая, что силы, вызывающие это удлинение, подчиняются закону Гука, найдем величину силы натяжения Т, действующей на сечение :

(5.2)

где - площадь поперечного сечения стержня, а - модуль упругости (модуль Юнга) материала стержня. Формула (5.2) должна быть хорошо известна читателю из курса сопротивления материалов.

Соответственно сила действующая на сечение равна

Поскольку силы заменяют действие отброшенных частей стержня, их результирующая равна разности

Считая выделенный участок стержня материальной точкой с массой , где - объемная плотность стержня, и применяя к нему второй закон Ньютона, составим уравнение

Сокращая на и вводя обозначение получим дифференциальное уравнение свободных продольных колебаний стержня

Если дополнительно предпоюжить, что к стержню приложена внешняя сила рассчитанная на единицу объема и действующая вдоль оси стержня, то к правой части соотношения (5 3) добавится слагаемое и уравнение (5.4) примет вид

что в точности совпадает с уравнением вынужденных котебаний струны.

Перейдем теперь к установлению начальных и краевых условий задачи и рассмотрим практически наиболее интересный случай, когда один конец стержня закреплен, и другой - свободен.

На свободном конце краевое условие будет иметь иной вид. Так как на этом конце внешние силы отсутствуют, то должна быть равна нулю и сила Т, действующая в сечении , т. е.

Колебания происходят оттого, что в начальный момент стержень был деформирован (растянут или сжат) и точкам стержня были приданы некоторые начальные скорости. Следовательно, мы должны знать смещение поперечных сечений стержня в момент

а также начальные скорости точек стержня

Итак, задача о свободных продольных колебаниях стержня, закрепленного на одном конце, возникающих благодаря начальному сжатию или растяжению, привела нас к уравнению

с начальными условиями

и краевыми условиями

Именно последнее условие и отличает с математической точки зрения рассматриваемую задачу от задачи о колебаниях струны, закрепленной на обоих концах.

Будем решать поставленную эадачу методом Фурье, т. е. отыскивать частные решения уравнения, удовлетворяющие краевым условиям (5.8), в виде

Так как дальнейший ход решения аналогичен уже изложенному в § 3, ограничимся только краткими указаниями. Дифференцируя функцию , подставляя полученные выражения в (5.6) и разделяя переменные, получим

(Предоставляем читателю самостоятельно установить, что в силу краевых условий постоянная в правой части не может быть числом положительным или нулем.) Общее решение уравнения имеет вид

В силу условий, наложенных на функцию будем иметь

Решения, не тождественно равные нулю, будут получаться только при соблюдении условия , т. е. при , где k может принимать значения

Итак, собственными числами задачи служат числа

Каждому соответствует собственная функция

Как мы уже знаем, умножая любую из собственных функций на произвольную постоянную, будем получать решение уравнения с поставленными краевыми условиями. Легко проверить, что, придавая числу k отрицательные значения, мы не получим новых собственных функций (например, при будет получаться функция, отличающаяся от собственной функции ) только знаком),

Докажем прежде всего, что собственные функции (5.11) ортогональны в интервале . Действительно, при

Если же , то

Доказать ортогональность собственных функций ожно и иначе, не опираясь на их явные выражения, а пользуясь только дифференциальным уравнением и краевыми усювиями. Пусть и - два различных собственных числа, и - соответствующие им собственные функции. По определению эти функции удовлетворяют уравнениям

и краевым условиям. Умножим первое из уравнений на второе на и вычтем одно из другого.

Свободные колебания систем с распределённымипараметрами

Основная особенность процесса свободных колебаний систем с бесконечным числом степеней свободы выражается в бесконечности числа собственных частот и форм колебаний. С этим связаны и особенности математического характера: вместо обыкновенных дифференциальных уравнений, описывающих колебания систем с конечным числом степеней свободы, здесь приходится иметь дело с дифференциальными уравнениями в частных производных. Кроме начальных условий, определяющих начальные смещения и скорости, необходимо учитывать и граничные условия, характеризующие закрепление системы.

6.1. Продольные колебания стержней

При анализе продольных колебаний прямолинейного стержня (рис.67,а) будем считать, что поперечные сечения остаются плоскими и что частицы стержня не совершают поперечных движений, а перемещаются только в продольном направлении.

Пусть u - продольное перемещение текущего сечения стержня при колебаниях; это перемещение зависит от расположения сечения (координаты x ) и от времени t . Таким образом, есть функция двух переменных; её определение и представляет основную задачу. Перемещение бесконечно близкого сечения равно , следовательно, абсолютное удлинение бесконечно малого элемента равно (рис.67,б), а относительное его удлинение .

Соответственно продольная сила в сечении с координатой х может быть записана в виде

,(173)

где жёсткость стержня при растяжении (сжатии). Сила N также является функцией двух аргументов – координаты х и времени t .

Рассмотрим элемент стержня, расположенный между двумя бесконечно близкими сечениями (рис.67,в). К левой грани элемента приложена сила N, а к правой – сила . Если обозначить через плотность материала стержня, то масса рассматриваемого элемента составляет . Поэтому уравнение движения в проекции на ось х

,

Учитывая(173)ипринимая A = const , получим

Следуя методу Фурье, ищем частное решение дифференциального уравнения (175) в виде

,(177)

т.е. предположим, что перемещение u можно представить в виде произведения двух функций, одна из которых зависит только от аргумента х , а другая только от аргумента t . Тогда вместо определения функции двух переменных u (x , t ) необходимо определять две функции X(x ) и T(t ), каждая из которых зависит только от одной переменной.

Подставив (177) в (174), получим

где штрихами обозначена операция дифференцирования по x , а точками – по t . Перепишем это уравнение таким образом:

Здесь левая часть зависит только от x,а правая – только от t . Для тождественного выполнения этого равенства (при любых x и t ) необходимо, чтобы каждая из его частей была равна постоянной, которую обозначим через :

; .(178)

Отсюда следуют два уравнения:

;.(179)

Первое уравнение имеет решение:

,(180)

указывающее на колебательный характер, причём из (180) видно, что неизвестная величина имеет смысл частоты свободных колебаний.

Второе из уравнений (179) имеет решение:

,(181)

определяющее форму колебаний.

Частотное уравнение, определяющее величину , составляется путём использования граничных условий. Это уравнение всегда трансцендентное и имеет бесконечное число корней. Таким образом, число собственных частот бесконечно, причём каждому значению частоты соответствует своя функция T n (t ), определяемая зависимостью (180), и своя функция Xn (x ), определяемая зависимостью (181). Решение (177) является лишь частным и не даёт полного описания движения. Полное решение получается путём наложения всех частных решений:

.

Функции X n (x ) называются собственными функциями задачи и описывают собственные формы колебаний. Они не зависят от начальных условий и удовлетворяют условию ортогональности, которое при А=const имеет вид

, если .

Рассмотрим некоторые варианты граничных условий.

Закреплённыйконец стержня (рис.68,а). В концевом сечении перемещение u должно быть равно нулю; отсюда следует, что в этом сечении

X=0(182)

Свободный конец стержня (рис.68,б). В концевом сечении продольная сила

(183)

должна тождественно равняться нулю, что возможно, если в концевом сечении X"=0.

Упругозакреплённый конец стержня (рис.68,в).

При перемещении u концевого стержня возникает упругая реакция опоры , где С о - жёсткость опоры. Учитывая (183) для продольной силы, получим граничное условие

еслиопора расположена на левом конце стержня (рис.68,в),и

если опора расположена на правом конце стержня (рис.68,г).


Сосредоточенная масса на конце стержня.

Развиваемая массой сила инерции:

.

Так как, согласно первому из уравнений (179), , то сила инерции может быть записана в виде . Получаем граничное условие

,

если масса находится на левом конце (рис.68,д),и

, (184)

если масса связана с правым концом (рис.68,е).

Определим собственные частоты консольного стержня (рис.68,a").

Согласно (182) и (183), граничные условия

X=0при х=0;

X"=0 при х= .

Подставляя поочерёдно эти условия в решение (181), получим

Условие С0 приводит к частотному уравнению:

Корни этого уравнения

(n=1,2,…)

определяют собственные частоты:

(n=1,2,…).(185)

Первая (низшая) частота при n=1:

.

Вторая частота (при n=2):

Определим собственные частоты стержня с массой на конце (рис.68,е).

Согласно (182) и (184),имеем

X=0 при х=0;

при х= .

Подставляя эти условия в решение (181), получим:

D=0; .

Следовательно, частотное уравнение при учёте(176) имеет вид

.

Здесь праваячасть представляет собой отношение массы стержня к массе концевого груза.

Для решения полученного трансцендентного уравнения необходимо воспользоваться каким-либо приближённым способом.

При и значения наиболее важного низшего корня будут соответственно 0.32 и 0.65 .

При малом отношении решающее влияние оказывает груз и хорошие результаты даёт приближённое решение

.

Для стержней переменного сечения, т.е. при Аconst , из (173) и (174) получается уравнение движения в виде

.

Это дифференциальное уравнение не поддаётся решению в замкнутом виде. Поэтому в подобных случаях приходится прибегать к приближённым методам определения собственных частот.

6.2. Крутильные колебания валов

Крутильные колебания валас непрерывно распределенной массой (рис.69,а) описываются уравнениями, которые по структуре полностью совпадают с приведенными выше уравнениями продольных колебаний стержней.


Крутящий моментМв сечении с абсциссой х связан с углом поворота дифференциальной зависимостью, аналогичной (173):

где J p -полярный момент инерции поперечного сечения.

В сечении, расположенном на расстоянии dx , крутящий момент равен (рис.69,б):

Обозначая через (где - плотность материала вала) интенсивность момента инерции массы вала относительно его оси (т.е. момент инерции единицы длины), уравнение движения элементарного участка вала можно записать так:

,

или подобно (174):

.

Подставляя сюда выражение (186), приJp =const получим, аналогично (175):

, (187)

Общее решение уравнения (187), как и уравнения (175), имеет вид

,

(188)

Собственные частоты и собственные функции при этом определяются конкретными граничными условиями.

В основных случаях закрепления концов аналогично случаю продольных колебаний получим

а) закрепленный конец (=0): Х=0;

б) свободный конец (М=0): Х"=0;

в) упругозакрепленный левый конец: СоХ=GJpX " (Со-коэффициент жёсткости);

г) упругозакрепленный правый конец: -СоХ=GJpX ";

д ) диск на левом конце: (Jo-момент инерции диска относительно оси стержня);

е) диск на правом конце: .

Если вал закреплён на левом конце (х=0), а правый конец (х= ) свободен, то Х=0 при х=0 и Х"=0 при x= ; собственные частоты определяются аналогично (185):

(n=1,2,…).

Если левый конец закреплён, а на правом конце имеется диск, получим трансцендентное уравнение:

.

Если оба конца вала закреплены, то граничные условия будут X=0 при х=0 и х= . В этом случае из (188) получим

т.е.

(n=1,2,…),

отсюда находим собственные частоты:

Если левый конец вала свободен, а на правом конце имеется диск, то X"=0 при х=0 ;Jo X=GJpX "при х= .

При помощи (188) находим

С=0; ,

или трансцендентное частотное уравнение:

.


6.3.Изгибные колебания балок

6.3.1.Основное уравнение

Из курса сопротивления материалов известны дифференциальные зависимости при изгибе балок:

где EJ - жёсткость при изгибе; y=y (x , t ) - прогиб; M=M(x , t ) - изгибающий момент; q - интенсивность распределённой нагрузки.

Объединяя (189) и (190), получим

.(191)

В задаче о свободных колебаниях нагрузкой для упругого скелета являются распределённые силы инерции:

где m - интенсивность массы балки (масса единицы длины), и уравнение (191) принимает вид

.

В частном случае постоянного поперечного сечения, когда EJ = const , m = const , имеем:

.(192)

Для решения уравнения (192) полагаем, как и выше,

y = X (x ) × T (t ).(193)

Подставляя (193) в (192), приходим к уравнению:

.

Для тождественного выполнения этого равенства необходимо, чтобы каждая из частей равенства была постоянной. Обозначая эту постоянную через , получим два уравнения:

.(195)

Первое уравнение указывает на то, что движение носит колебательный характер с частотой .

Второе уравнение определяет форму колебаний. Решение уравнения (195) содержит четыре постоянных и имеет вид

Удобно использовать вариант записи общего решения, предложенный А.Н.Крыловым:

(198)

представляют собой функции А.Н.Крылова.

Обратим внимание на то, что S=1, T=U=V=0 при x=0. Функции S,T,U,V связаны между собой следующим образом:

Поэтому производные выражения (197) записываются в виде

(200)

В задачах рассматриваемого класса число собственных частот бесконечно велико; каждой из них отвечает своя функция времени T n и своя фундаментальная функция X n . Общее решение получится путём наложения частных решений вида (193)

.(201)

Для определения собственных частот и формул необходимо рассмотреть граничные условия.

6.3.2. Граничные условия

Для каждого конца стержня можно указать два граничных условия.

Свободный конец стержня (рис. 70,а). Нулю равны поперечная сила Q=EJX"""T и изгибающий момент M=EJX""T. Поэтому граничные условия имеют вид

X""=0; X"""=0 .(202)


Шарнирно-опёртый конец стержня (рис.70,б). Нулю равны прогиб y=XT и изгибающий момент M=EJX""T. Следовательно, граничные условиятаковы:

X=0 ; X""=0 .(203)

Защемленный конец (рис.70,в). Нулю равны прогиб y=XT и угол поворота . Граничные условия:

X=0; X"=0 . (204)

На конце стержня имеется точечный груз массы (рис.70,г). Его сила инерции может быть при помощи уравнения (194) записана так: ; она должна быть равна поперечной силеQ=EJX"""T , поэтому граничные условия принимают вид

; X""=0 .(205)

В первом условии знак плюс принимается в случае, когда точечныйгруз связан с левым концом стержня, и знак минус, когда он связан с правым концом стержня. Второе условие вытекает из отсутствия изгибающего момента.

Упруго-опертый конец стержня (рис.70,д). Здесь изгибающий момент равен нулю, а поперечная сила Q=EJX"""T равна реакции опоры (C o -коэффициент жёсткости опоры).

Граничные условия:

X""=0 ; (206)

(знак минус принимается в случае, когда упругая опора является левой, и знак плюс, когда она является правой).

6.3.3. Частотное уравнение и собственные формы

Развёрнутая запись граничных условий приводит к однородным уравнениям относительно постоянных C 1 , C 2 , C 3 , C 4 .

Чтобы эти постоянные не равнялись нулю, должен равняться нулю определитель, составленный из коэффициентов системы; это приводит к частотному уравнению. При этих операциях выясняются соотношения между C 1 , C 2 , C 3 , C 4 , т.е. определяются собственные формы колебаний (с точностью до постоянного множителя).

Проследим составление частотных уравнений на примерах.

Для балки с шарнирно-опёртыми концами согласно (203) имеем следующие граничные условия: X=0; X""=0 при x=0 и x= . При помощи(197)-(200) получим из первых двух условий: C 1 =C 3 =0. Два оставшихся условия можно записать в виде

Чтобы C 2 и C 4 не были равны нулю, необходимо равенство нулю определителя:

.

Таким образом, частотное уравнение имеет вид

.

Подставляя выражения T и U, получим

Так как , то окончательно частотное уравнение записывается так:

. (207)

Корни этого уравнения:

,(n =1,2,3,...).

Учитывая (196), получим

.(208)

Перейдём к определению собственных форм. Из записанных выше однородных уравнений вытекает следующее соотношениемежду постоянными C 2 и C 4:

.

Следовательно, (197) приобретает вид

Согласно (207), имеем

,(209)

где - новая постоянная, значение которой остаётся неопределённым, пока не введены в рассмотрение начальные условия.

6.3.4. Определение движения по начальным условиям

Если требуется определить движение, следующее после начального возмущения, то необходимо указать для всех точек балки как начальные смещения, так и начальные скорости:

(210)

и использовать свойство ортогональности собственных форм:

.

Общее решение (201) запишем так:

.(211)

Скорость определяется выражением

.(212)

Подставляя в правые части уравнений (211) и (212) , а в левые части - предполагаемые известными начальные смещения и скорости, получим

.

Умножая эти выражения на и интегрируя по всей длине, имеем

(213)

Бесконечные суммы в правых частях исчезли вследствие свойства ортогональности. Из (213) следуют формулы для постоянных и

(214)

Теперь эти результаты нужно подставить в решение (211).

Снова подчеркнём, что выбор масштаба собственных форм несущественен. Если, например, в выражении собственной формы (209) принять вместо величину в раз большую, то (214) дадут результаты в раз меньшие; после подстановки в решение (211) эти различия компенсируют друг друга. Тем не менее часто пользуются нормированными собственными функциями, выбирая их масштаб таким, чтобы знаменатели выражений (214) равнялись единице, что упрощает выражения и .


6.3.5. Влияние постоянной продольной силы

Рассмотрим случай, когда колеблющаяся балка испытывает действие продольной силы N , величина которой не меняется в процессе колебаний. В этом случае уравнение статического изгиба усложняется и приобретает вид (при условии, что сжимающая сила считается положительной)

.

Полагая и считая жёсткость постоянной, получаем уравнение свободных колебаний

.(215)

Принимаем по-прежнему частное решение в виде.

Тогда уравнение (215) распадается на два уравнения:

Первое уравнение выражает колебательный характер решения, второе определяет форму колебаний, а также позволяет найти частоты. Перепишем его таким образом:

(216)

где K определяется формулой (196), а

Решение уравнения (216) имеет вид

Рассмотрим случай, когда оба конца стержня имеют шарнирные опоры. Условия на левом конце дают . Удовлетворяя те же условия на правом конце, получим

Приравнивая нулю определитель, составленный из коэффициентов при величинах и , приходим к уравнению

Корни этого частотного уравнения:

Следовательно, собственная частота определится из уравнения

.

Отсюда при учёте (217) находим

.(219)

При растяжении частота увеличивается, при сжатии уменьшается. Когда сжимающая сила N приближается к критическому значению, корень стремится к нулю.

6.3.6. Влияние цепных усилий

Ранее продольная сила считалась заданной и не зависящей от перемещений системы. В некоторых практических задачах сопровождающая процесс поперечных колебаний продольная сила возникает вследствие изгиба балки и носит характер реакции опоры. Рассмотрим, например, балку на двух шарнирно-неподвижных опорах. При её изгибе возникают горизонтальные реакции опор, вызывающие растяжение балки; соответствующее горизонтальное усилие принято называть цепным усилием . Если балка совершает поперечные колебания, то цепное усилие будет изменяться во времени.

Если в мгновение t прогибы балки определяются функцией , то удлинение оси можно найти по формуле

.

Соответствующее цепное усилие найдём при помощи закона Гука

.

Подставим этот результат в (215) вместо продольной силы N (с учётом знака)

.(220)

Полученное нелинейное интегродифференциальное уравнение упрощается при помощи подстановки

,(221)

где безразмерная функция времени, максимальное значение которой можно положить равным любому числу, например, единице; амплитуда колебаний.

Подставляя (221) в (220), получим обыкновенное дифференциальное уравнение

,(222)

коэффициенты которого имеют следующие значения:

;.

Дифференциальное уравнение (222) является нелинейным, следовательно, частота свободных колебаний зависит от их амплитуды.

Точное решение для частоты поперечных колебаний имеет вид

где частота поперечных колебаний, вычисленная без учёта цепных усилий; поправочный коэффициент, зависящий от отношения амплитуды колебаний к радиусу инерции поперечного сечения ; величина приводится в справочной литературе.

При соизмеримости амплитуды и радиуса инерции поперечного сечения поправка к частоте становится значительной. Если, например, амплитуда колебаний стержня круглого сечения равна его диаметру, то , и частота почти в два раза больше, чем в случае свободного смещения опор.

Случай соответствует нулевому значению радиуса инерции, когда изгибная жёсткость балки исчезающе мала - струна. При этом формула для даёт неопределённость. Раскрывая эту неопределённость, получим формулу для частоты колебаний струны

.

Эта формула относится к случаю, когда в положении равновесия натяжение равно нулю. Часто задачу о колебаниях струны ставят в других предположениях: считают, что перемещения малы, а растягивающая сила задана и остаётся неизменной в процессе колебаний.

При этом формула для частоты имеет вид

где N - постоянная растягивающая сила.

6.4. Влияние вязкого трения

Ранее предполагалось, что материал стержней идеально упругий и трение отсутствует. Рассмотрим влияние внутреннего трения, считая, что оно является вязким; тогда связь напряжений с деформациями описывается соотношениями

;.(223)

Пусть стержень с распределёнными параметрами совершает свободные продольные колебания. В этом случае продольная сила запишется в виде

Из уравнения движения элемента стержня было получено соотношение (174)

Подставляя сюда (224), приходим к основному дифференциальному уравнению

,(225)

которое отличается от (175) вторым слагаемым, выражающим влияние сил вязкого трения.

Следуя методу Фурье, ищем решение уравнения (225) в виде

,(226)

где функция только координаты x , а функция только времени t .

При этом каждый член ряда должен удовлетворять граничным условиям задачи, а вся сумма - также и начальным условиям. Подставляя(226)в(225)и требуя, чтобы равенство удовлетворялось для любого номера r , получим

,(227)

где штрихи обозначают дифференцирование по координате x , а точки - дифференцирование по времени t .

Разделив (227) на произведение , приходим к равенству

,(228)

левая часть, которого может зависеть только от координаты x , а правая - только от времени t . Для тождественного выполнения равенства (228) необходимо, чтобы обе части были равны одной и той же постоянной, которую обозначим через .

Из этого следуют уравнения

(229)

.(230)

Уравнение (229) не зависит от коэффициента вязкости K и, в частности, остаётся таким же в случае идеально упругой системы, когда . Поэтому числа полностью совпадают с найденными ранее; однако, как будет показано ниже, величина даёт лишь приближённое значение собственной частоты. Отметим, что собственные формы совершенно не зависят от вязких свойств стержня, т.е. формы свободных затухающих колебаний совпадают с формами свободных незатухающих колебаний.

Теперь перейдём к уравнению (230), описывающему процесс затухающих колебаний; его решение имеет вид

.(233)

Выражение (232) определяет темп затухания, а (233) - частоту колебаний.

Таким образом, полное решение уравнения задачи

.(234)

Постоянные и всегда можно найти по заданным начальным условиям. Пусть начальные смещения и начальные скорости всех сечений стержня заданы следующим образом:

;,(235)

где и - известные функции.

Тогда при , согласно (211) и (212), имеем

умножая обе части этих равенств на и интегрируя в пределах всей длины стержня, получим

(236)

Соответственно условию ортогональности собственных форм все остальные слагаемые, входящие в правые части этих равенств, обращаются в нуль. Теперь из равенств (236) легко найти и для любого номера r .

Рассматривая (232) и (234), заметим, что чем выше номер формы колебаний , тем быстрее её затухание. Кроме того, слагаемые, входящие в(234), описывают затухающие колебания, если есть действительное число. Из (233) видно, что это имеет место лишь для нескольких начальных значений r , пока выполняется неравенство

При достаточно больших значенияхr неравенство (237) нарушается и величина становится мнимой. При этом соответствующие члены общего решения (234) уже не будут описывать затухающие колебания, но будут представлять апериодическое затухающее движение. Другими словами, колебания, в обычном смысле слова, выражает только некоторая конечная часть суммы (234).

Все эти качественные выводы относятся не только к случаю продольных колебаний, но и к случаям крутильных и изгибных колебаний.

6.5. Колебания стержней переменного сечения

В тех случаях, когда распределённая масса и сечение стержня переменны по его длине, следует вместо уравнения продольных колебаний (175) исходить из уравнения

.(238)

Уравнение крутильных колебаний (187) должно быть заменено уравнением

,(239)

а уравнение поперечных колебаний (192) – уравнением

.(240)

Уравнения (238)-(240) при помощи однотипных подстановок ;;можно привести к обыкновенным дифференциальным уравнениям для функции

МЕХАНИКА

УДК 531.01/534.112

ПРОДОЛЬНЫЕ КОЛЕБАНИЯ ПАКЕТА СТЕРЖНЕЙ

А.М. Павлов, А.Н. Темнов

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация e-mail: [email protected]; [email protected]

В вопросах динамики жидкостных ракет важную роль играет проблема устойчивости движения ракеты при возникновении продольных упругих колебаний. Появление таких колебаний может привести к установлению автоколебаний, которые в случае неустойчивости ракеты в продольном направлении могут привести к ее быстрому разрушению. Сформулирована задача о продольных колебаниях ракеты пакетной схемы, в качестве расчетной модели использован пакет стержней. Принято, что жидкость в баках ракеты "заморожена", т.е. собственные движения жидкости не учтены. Сформулирован закон баланса полной энергии для рассматриваемой задачи и приведена ее операторная постановка. Приведен численный пример, для которого определены частоты, построены и проанализированы формы собственных колебаний.

Ключевые слова: продольные колебания, частота и форма колебаний, пакет стержней, закон баланса полной энергии, самосопряженный оператор, спектр колебаний, POGO.

SYSTEM OF RODS LONGITUDINAL VIBRATIONS А.М. Pavlov, АЛ. Temnov

Bauman Moscow State Technical University, Moscow, Russian Federation e-mail: [email protected]; [email protected]

In questions of dynamics of liquid fuel rockets the problem of motion stability for this rocket has an important role with the appearance of longitudinal elastic vibrations. An occurrence of such kind vibrations can evoke self-vibrations which may cause rapid destruction of the rocket in case of rocket instability within longitudinal direction. The problem on longitudinal vibrations of the liquid fuel rocket based on the packet scheme has been formulated using package rods as computational model. It is assumed that the liquid in the rocket tanks is "frozen", i.e. proper motions of the liquid are not included. For this problem energy conservation principle was formulated and its operator staging is given. There is a numerical example, for which the frequencies have been determined, forms of Eigen vibration were built and analyzed.

Keywords: longitudinal vibrations, eigen modes and frequencies, rods model, energy conservation principle, selfadjoint operator, vibration spectrum, POGO.

Введение. В настоящее время в России и за рубежом для вывода на требуемую орбиту полезного груза часто используют ракеты-носители (РН) пакетной компоновки с одинаковыми боковыми блоками, равномерно распределенными вокруг центрального блока.

Исследования колебаний пакетных конструкций наталкиваются на определенные трудности, связанные с динамическим воздействием боковых и центрального блоков . В случае симметрии компоновки РН сложное, пространственное взаимодействие блоков пакетной конструкции можно разделить на конечное число типов колебаний, одним из которых являются продольные колебания центрального и боковых блоков . Математическая модель продольных колебаний подобной конструкции в виде пакета тонкостенных стержней подробно рассмотрена в работе . Рис. 1. Схема централь- В настоящей статье приведены теоретиче-ного стержня ские и вычислительные результаты продоль-

ных колебаний пакета стержней, дополняющие исследование, выполненное А.А. Пожалостиным .

Постановка задачи. Рассмотрим другие продольные колебания пакета стержней, состоящего из центрального стержня длиной l0 и N боковых стержней одинаковой длины j = l, (l0 > lj), j = 1, 2,..., N, скрепленных в точке А (xA = l) (рис. 1) с центральными пружинными элементами жесткостью k.

Введем неподвижную систему отсчета ОХ и предположим, что жесткость стержней EFj (x), распределенная масса mj (x) и возмущение q (x,t) являются ограниченными функциями координаты x:

0

0 < mj < mj (x) < Mj; (1)

0

Пусть при продольных колебаниях в сечениях стержней с координатой x возникают смещения Uj (x, t), определяемые по уравнениям

mj (x) ^ - ¿(eFj (x) ^ = qj (x,t), j = 0,1, 2,..., N, (2)

граничными условиями отсутствия нормальных сил на концах стержней

3 =0, х = 0, ^ = 1, 2,

0, x = 0, x = l0;

условиями равенства нормальных сил, возникающих в стержнях,

EF-3 = F x = l

силам упругости пружинных элементов

FпPJ = к (щ (ха) - щ (¡,)); (4)

ЕУодХ (ха - 0) - EFодХ (ха + 0) = , х = ха;

условием равенства перемещений в точке ха центрального стержня

Щ (ха-о) = Щ (ха+о) и начальными условиями

Щ у (х, 0) - Щ (х) ; , _

щ (х, 0) = Щ (х),

где щ (х, 0) = "д^1 (х, 0).

Закон баланса полной энергии. Умножим уравнение (2) на щ (х,£), проинтегрируем по длине каждого стержня и сложим результаты, используя граничные условия (3) и условие согласования (4). В результате получим

({ 1 ^ [ (диЛ 2

тз (х) "БТ" (х+

dt | 2 ^ J 3 w V dt

N x „ ч 2 .. N „ i.

1 ^ Г „„ , f дп3\ , 1 ^ Гj

1 N /* i дпЛ 2 1 N fl j

EF3 dx +2^Уо Ы (x - -)(no - Uj)2 dx

= / ^ (х, £) их у (х,£) (х, (6)

где 8 (х - ¡у) - дельта-функция Дирака. В уравнении (6) первое слагаемое в фигурных скобках представляет собой кинетическую энергию Т (¿) системы, второе - потенциальную энергию Пр (£), обусловленную деформацией стержней, а третье - потенциальную энергию Пк (£) пружинных элементов, которая при наличии упругих деформаций стержней может быть записана в виде

Пк (*) = 2 £ / Су (¡у) 8 (х - ¡1) Е^ (¡у) (ддит (¡1)) 2 (х, Су = Еу.

Уравнение (6) показывает, что изменение полной энергии в единицу времени рассматриваемой механической системы равно мощности

внешнего воздействия. При отсутствии внешнего возмущения q (x,t) получаем закон сохранения полной энергии:

T (t) + Пр (t) + Пк (t) = T (0) + Пр (0) + Пк (0).

Операторная постановка. Закон баланса энергии показывает, что для любого момента времени t функции Uj (x, t) можно рассматривать как элементы гильбертова пространства L2j(; m3 (x)), определенные на длине ¡i скалярным произведением

(us,Vk)j = J mj (x) usVkdx 0

и соответствующей нормой.

Введем гильбертово пространство H, равное ортогональной сумме L2j, H = L20 Ф L21 Ф... Ф L2N, вектор-функцию U = (uo, Ui,..., uN)т и оператор A, действующий в пространстве H согласно соотношению

AU = diag (A00U0, A11U1,..., Annun).

mj (x) dx \ j dx "

операторы, определенные на

множестве Б (А33) С Н функций, удовлетворяющих условиям (3) и (4).

Исходная задача (1)-(5) вместе с начальными условиями запишется в виде

Аи = f (*), и (0) = и0, 17(0) = и1, (7)

где f (*) = (до (*) ,51 (*),..., Ям (¿))т.

Лемма. 1. Если выполнены первые два условия (1), то оператор А в эволюционной задаче (7) - неограниченный, самосопряженный, положительно определенный в пространстве Н оператор

(Аи,К)н = (и,АК)н, (Аи, и)я > с2 (и, и)я.

2. Оператор А порождает энергетическое пространство НА с нормой, равной удвоенному значению потенциальной энергии колебаний пакета стержней

3 \ ^ I з)2 = 2П > 0. (8)

IIUIIA = £/ EF^^J dx + k £ (uo - U)2 = 2П > 0.

< Оператор А неограничен в пространстве Н, поскольку неограничен каждый диагональный элемент А33. Самосопряженность и положительная определенность оператора А проверяются непосредственно:

(AU, v)h =/m (x) (-^| (EFo (x) ^j) Vo (x) dx+

+£ jm(x) (- jx) | (ef- (x) dndxa))v-(x) dx=... =

EFo (x) uo (x) vo (x) dx - EFo (x) U) (x) vo (x)

J EFo (x) uo (x) vo (x) dx - EFo (x) uo (x) ?o (x)

+ ^^ / EF- (x) u- (x) vo (x) dx - ^^ EF- (x) u- (x) v- (x)

J EFo (x) uo (x) v" (x) dx - EFo (xa - 0) uo (xa - 0) vo (xa) + 0

EFo (xa + 0) uo (xa + 0) vo (xa) - £ EF- (/-) u- (/-) v- (/-) +

J EF- (x) u- (x) v- (x) dx = J EFo (x) uo (x) vo (x) dx+ -=100

+ £ / EF.,- (x) u- (x) г?- (x) dx+ o

O (xa) -

£ EF- (/-) u- (/-) v?"- (/-) = EFo (x) uo (x) v?"o (x) dx+ -=10

+ £ / EF- (x) u- (x) v- (x) dx+ -=1 0 -

+ £ k (uo (xa) - u- (/-)) (vo (xa) - v- (/-)) = (U, A?)H

(AU, U)H = ... = I EF0 (x) u"2 (x) dx - EF0 (x) u0 (x) u0 (x)

J EF0 (x) u"0 (x) dx - EF0 (x) u0 (x) u0 (x)

+ ^^ / EFj (x) u"2 (x) dx - ^^ EFj (x) uj (x) u3 (x)

"J EF°(x) u"2 (x) dx 4EF0 (x) u"2 (x) dx+£ JEFj (x) u"2 (x) dx

У^ k (u0 (l) uj (l) - u2 (/)) + u0 (l) ^ k (u0 (l) - uj (l)) =

EF0 (x) u"2 (x) dx + / EF0 (x) u"0 (x) dx +

S / EFj (x) u"2 (x) dx + k ^ (u0 (l) - uj (l))2 > c2 (U, U)H

Из приведенных результатов следует, что энергетическая норма оператора A выражается формулой (8).

Разрешимость эволюционной задачи. Сформулируем следующую теорему.

Теорема 1. Пусть выполнены условия

U0 £ D (A1/2) , U0 £ H, f (t) £ C (; H),

тогда задача (7) имеет единственное слабое решение U (t) на отрезке , определяемое по формуле

U (t) = U0 cos (tA1/2) +U1 sin (tA1/2) +/sin ((t - s) A1/2) A-1/2f (s) ds.

5 отсутствии внешнего возмущения f (£) выполняется закон сохранения энергии

1 II A 1/2UИ2 = 1

1 II A1/2U 0|H.

< Эволюционная задача (7) - это стандартная задача Коши для дифференциального операторного уравнения гиперболического типа, для которого выполнены все условия теоремы о разрешимости .

Собственные колебания пакета стержней. Примем, что на стержневую систему не действует поле внешних сил: f (t) = 0. В этом случае движения стержней будем называть свободными. Свободные движения стержней, зависящие от времени t по закону exp (iwt), назовем собственными колебаниями. Приняв в уравнении (7) U (ж, t) = U (ж) eiWÍ, получим спектральную задачу для оператора A:

AU - AEU = 0, Л = ш2. (9)

Свойства оператора A позволяют сформулировать теорему о спектре и свойствах собственных функций .

Теорема 2. Спектральная задача (9) о собственных колебаниях пакета стержней имеет дискретный положительный спектр

0 < Ai < Л2 < ... < Ak < ..., Ak ^ то

и систему собственных функций {Uk (ж)}^=0, полную и ортогональную в пространствах H и HA, при этом выполнены следующие формулы ортогональности:

(Ufe, Us)H = £ m (xj UfejMSjdx = j=0 0

(Uk= £/Ц^) d*+

K («feo - Mfej) (uso -) = Afeífes. j=i

Исследование спектральной задачи в случае однородного пакета стержней. Представив функцию перемещений м- (ж,£) в виде м- (ж,£) = м- (ж) , после разделения переменных получим спектральные задачи для каждого стержня:

^Ои + Лм = 0, ^ = 0,1,2,..., N (10)

которые запишем в матричной форме

4 £ + Ли = 0,

А = -,-,-,...,-

\ т0 т1 т2 т«

и = (и0, и1, и2,..., и«)т.

Решение и анализ полученных результатов. Обозначим функции перемещения для центрального стержня на участке как и01 и на участке как и02 (ж). При этом для функции и02 начало координат перенесем в точку с координатой /. Для каждого стержня представим решение уравнения (10) в виде

Для нахождения неизвестных констант в (11) воспользуемся сформулированными выше граничными условиями. Из однородных граничных условий можно определить некоторые константы, а именно:

C02 = C12 = C22 = C32 = C42 = ... = CN 2 = 0.

В итоге остается найти N + 3 констант: C01, C03, C04, C11, C21, C31, C41,..., CN1. Для этого решим N + 3 уравнений относительно N + 3 неизвестных.

Запишем полученную систему в матричной форме: (A) {C} = {0} . Здесь {C} = {C01, C03, C04, C11, C21, C31, C41,..., Cn 1}т - вектор неизвестных; (A) - характеристическая матрица,

cos (Л1) EF0 Л sin (Л1) +

Л sin (Л (Zo - 1)) Л cos (Л (Zo - 1)) 0 00 0 \ -1 0 0000

0 y 00 00 0 000Y

а = к соэ ^ ^А-Л^ ; в = -к со8((.40-01Л)1/2 ^ ;

7 = (А4"-1 л) 1/2 ап ((А"1л) 1/2 + к сов ((А"1л) 1/2 ;

(~ \ 1/2 ~ Л= ^Л] ; А-- : 3 = 0.

Для нахождения нетривиального решения в качестве переменной примем константу С01 € М. Имеем два варианта: С01 = 0; С01 = 0.

Пусть С01 = 0, тогда С03 = С04 = 0. В этом случае нетривиальное решение может быть получено, если 7 = 0 из (12) при выполнении дополнительного условия

£ с-1 = 0, (13)

которое может быть получено из третьего уравнения системы (12). В итоге получаем простое частотное уравнение

ЕР (А"1 Л)1/2 вт ((А"1^1/2 П +

зз у \ V зз

K cos ^ (A-/a) 1/2 ^ = 0, j G ,

совпадающее с частотным уравнением для стержня упруго закрепленного на одном конце, который можно рассматривать как первую парциальную систему.

В этом случае все возможные комбинации движений боковых стержней, удовлетворяющих условию (13), можно условно разделить на группы, соответствующие различным комбинациям фаз (в рассматриваемом случае фаза определяется знаком С.д). Если принять боковые стержни идентичными, то имеем два варианта:

1) Сд = 0, тогда число таких комбинаций п для различных N можно вычислить по формуле п = N 2, где - функция деления без остатка;

2) какая-либо (или какие-либо) из констант С- равны 0, тогда число возможных комбинаций возрастает и может быть определено по формуле

£ [(N - m) div 2].

Пусть Coi = 0, тогда Cn = C21 = C31 = C41 = ... = CN1 = = C01 (-в/т), где в и y - комплексы, входящие в (12). Из системы (12) также имеем: C03 = C01 cos (Л/); C04=C03 tg (Л (/0 - /)) = C01 cos (A/) x x tg (Л (/0 - /)), т.е. все константы выражены через C01. Частотное уравнение принимает вид

EFo U-o1 Л tg A-1 Л) " (lo - l)) -

K2 cos | í a!-,1 Л

В качестве примера рассмотрим систему с четырьмя боковыми стержнями. Кроме описанного выше способа для этого примера можно записать частотное уравнение для всей системы, вычислив определитель матрицы А и приравняв его нулю. Приведем его вид

Y4 (Л sin (Л (/o - /)) cos (Л/) EFoЛ+

Л cos (Л (/o - /)) (EFoЛ sin (Л/) + 4в)) -

4авт3Л cos (Л(/0 - /)) = 0.

Графики трансцендентных частотных уравнений для рассмотренных выше случаев представлены на рис. 2. В качестве исходных данных были приняты следующие: EF = 2 109 Н; EF0 = 2,2 109 Н; k = 7 107 Н/м; m = 5900 кг/м; mo = 6000 кг/м; / = 23; /о = 33 м. Значения первых трех частот колебаний рассматриваемой схемы приведены ниже:

n.....................................

и, рад/с..............................

1 2 3 20,08 31,53 63,50

Рис. 2. Графики трансцендентных частотных уравнений для Coi = 0 (i) и Coi = 0 (2)

Приведем формы колебаний, соответствующие полученным решениям (в общем случае формы колебаний не нормированы). Формы колебаний, соответствующие первой, второй, третьей, четвертой, 13 и 14 частотам, приведены на рис. 3. При первой частоте колебаний боковые стержни колеблются с одинаковой формой, но попарно в противофазе

Рис.3. Формы колебаний боковых (1) и центральных (2) стержней, соответствующие первой V = 3,20 Гц (а), второй V = 5,02 Гц (б), третьей V = 10,11 Гц (в), четвертой V = 13,60 Гц (г), 13-й V = 45,90 Гц (д) и 14-й V = 50,88 Гц (е) частотам

(рис. 3, а), при второй - центральный стержень совершает колебания, а боковые колеблются по одинаковой форме в фазе (рис. 3, б). Следует отметить, что первая и вторая частоты колебаний рассматриваемой стержневой системы соответствуют колебаниям системы, состоящей из твердых тел.

При колебании системы с третьей собственной частотой первый раз появляются узлы (рис.3,в). Третья и последующие частоты (рис.3,г) соответствуют уже упругим колебаниям системы. С возрастанием частоты колебаний, связанной с уменьшением влияния упругих элементов, частоты и формы колебаний стремятся к парциальным (рис.3,д, е).

Кривые функций, точки пересечения которых с осью абсцисс являются решениями трансцендентных уравнений, представлены на рис. 4. Согласно рисунку, собственные частоты колебаний системы расположены вблизи парциальных частот. Как было отмечено выше, при увеличении частоты сближение собственных частот с парциальными усиливается. В результате частоты, при которых колеблется вся система, условно разделяются на две группы: близкие к парциальным частотам бокового стержня и частоты, близкие к парциальным частотам центрального стержня.

Выводы. Рассмотрена задача о продольных колебаниях пакета стержней. Описаны свойства поставленной краевой задачи и спектра ее собственных значений. Предложено решение спектральной задачи для произвольного числа однородных боковых стержней. Для численного примера найдены значения первых частот колебаний и построены соответствующие им формы. Также были выявлены некоторые характерные свойства построенных форм колебаний.

Рис. 4. Кривые функций, точки пересечения которых с осью абсцисс являются решениями трансцендентных уравнений, для СоХ = 0 (1), Сох = 0 (2) совпадают с первой парциальной системой (боковой стержень, закрепленный на упругом элементе в точке х = I) и второй парциальной системы (5) (центральный стержень, закрепленный на четырех упругих элементах в точке А)

ЛИТЕРАТУРА

1. Колесников К.С. Динамика ракет. М.: Машиностроение, 2003. 520 с.

2. Баллистические ракеты и ракеты-носители / О.М. Алифанов, А.Н. Андреев, В.Н. Гущин и др. М.: Дрофа, 2004. 511 с.

3. Рабинович Б.И. Введение в динамику ракет-носителей космических аппаратов. М.: Машиностроение, 1974. 396 с.

4. Parameter study on POGO stability of liquid rockets / Z. Zhao, G. Ren, Z. Yu, B. Tang, Q. Zhang // J. of Spacecraft and Rockets. 2011. Vol. 48. Is. 3. P. 537-541.

5. Балакирев Ю.Г. Методы анализа продольных колебаний ракет-носителей с жидкостным двигателем // Космонавтика и ракетостроение. 1995. № 5. С. 50-58.

6. Балакирев Ю.Г. Особенности математической модели жидкостной ракеты пакетной компоновки как объекта управлении // Избранные проблемы прочности современного машиностроения. 2008. С. 43-55.

7. Докучаев Л.В. Совершенствование методов исследований динамики ракеты-носителя пакетной конструкции с учетом их симметрии // Космонавтика и ракетостроение. 2005. № 2. С. 112-121.

8. Пожалостин А.А. Разработка приближенных аналитических методов расчета собственных и вынужденных колебаний упругих оболочек с жидкостью: дис. ... д-ра техн. наук. М., 2005. 220 с.

9. Крейн С.Г. Линейные дифференциальные уравнения в банаховых пространствах. М.: Наука, 1967. 464 с.

10. Копачевский И.Д. Операторные методы математической физики. Симферополь: ООО "Форма", 2008. 140 с.

Kolesnikov K.S. Dinamika raket . Moscow, Mashinostroenie Publ., 2003. 520 p.

Alifanov O.N., Andreev A.N., Gushchin V.N., eds. Ballisticheskie rakety i rakety-nositeli . Moscow, Drofa Publ., 2003. 511 p.

Rabinovich B.I. Vvedenie v dinamiku raket-nositeley kosmicheskikh apparatov . Moscow, Mashinostroenie Publ., 1974. 396 p.

Zhao Z., Ren G., Yu Z., Tang B., Zhang Q. Parameter study on POGO stability of liquid fuel rocket. J. Spacecraft and Rockets, 2011, vol. 48, iss. 3, pp. 537-541.

Balakirev Yu.G. Methods of analysis of longitudinal vibrations of launch vehicles with liquid propellant engine. Kosm. i raketostr. , 1995, no. 5, pp. 50-58 (in Russ.).

Balakirev Yu.G. Osobennosti matematicheskoy modeli zhidkostnoy rakety paketnoy komponovki kak ob"ekta upravlenii . Sb. "Izbrannye problemy prochnosti sovremennogo mashinostroeniya" . Moscow, Fizmatlit Publ., 2008. 204 p. (cited pp. 4355).

Dokuchaev L.V. Improvement of methods for studying the dynamics of clustered launch vehicle considering their symmetry. Kosm. i raketostr. , 2005, no. 2, pp. 112-121 (in Russ.).

Pozhalostin A.A. Razrabotka priblizhennykh analiticheskikh metodov rascheta sobstvennykh i vynuzhdennykh kolebaniy uprugikh obolochek s zhidkost"yu. Diss. doct. tekhn. nauk .

Kreyn S.G. Lineynye differentsial"nye uravneniya v Banakhovykh prostranstvakh . Moscow, Nauka Publ., 1967. 464 p. Kopachevskiy I.D. Operatornye metody matematicheskoy fiziki . Simferopol", Forma Publ., 2008. 140 p.

Статья поступила в редакцию 28.04.2014

Павлов Арсений Михайлович - студент кафедры "Космические аппараты и ракеты-носители" МГТУ им. Н.Э. Баумана. Специализируется в области ракетно-космической технологии.

МГТУ им. Н.Э. Баумаш, Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5.

Pavlov A.M. - student of "Spacecrafts and Launch Vehicles" department of the Bauman Moscow State Technical University. Specialist in the field of rocket-and-space technology. Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005 Russian Federation.

Темнов Александр Николаевич - канд. физ.-мат. наук, доцент кафедры "Космические аппараты и ракеты-носители" МГТУ им. Н.Э. Баумана. Автор более 20 научных работ в области механики жидкости и газа и ракетно-космической технологии. МГТУ им. Н.Э. Баумаш, Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5.

Temnov A.N. - Cand. Sci. (Phys.-Math.), assoc. professor of "Spacecrafts and Launch Vehicles" department of the Bauman Moscow State Technical University. Author of more than 20 publications in the field of fluid and gas mechanics and rocket-and-space technology.

Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005 Russian Federation.