Пусть в канонических уравнениях прямой

коэффициент отличен от нуля, т. е. прямая не параллельна плоскости хОу. Запишем эти уравнения раздельно в таком виде:

При нашем условии уравнения (6) вполне определяют прямую. Каждое из них в отдельности выражает плоскость, причем первая из них параллельна оси Оу, а вторая - оси

Таким образом, представляя прямую линию уравнениями вида (6), мы рассматриваем ее как пересечение двух плоскостей, проектирующих эту прямую на плоскости координат xOz и yOz. Первое из уравнений (6), рассматриваемое в плоскости определяет проекцию данной прямой линии на эту плоскость; точно так же второе из уравнений (6), рассматриваемое в плоскости определяет проекцию данной прямой линии на плоскости yOz. Итак, можно сказать, что дать уравнения прямой линии в виде (6) - это значит дать ее проекции на плоскости координат хOz и yOz.

Если бы направляющий коэффициент был ранен нулю, то обязательно хотя бы один из двух других коэффициентов, например , был бы отличен от нуля, т. е. прямая не была бы параллельна плоскости yOz. В этом случае мы могли бы выразить прямую

уравнениями плоскостей, проектирующих ее на координатные плоскости записав уравнения (5) в виде

Таким образом, любая прямая может быть выражена уравнениями двух плоскостей, проходящих через нее и проектирующих ее на координатные плоскости. Но определять прямую совсем не обязательно именно такой парой плоскостей.

Через каждую прямую проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно, представляют собой уравнения этой прямой.

Вообще всякие две не параллельные между собой плоскости с общими уравнениями

определяют прямую их пересечения.

Уравнения (7), рассматриваемые совместно, называются общими уравнениями прямой.

От общих уравнений прямой (7) можно перейти к ее каноническим уравнениям. Для этой цели мы должны знать какую-нибудь точку прямой и направляющий вектор.

Координаты точки легко найдем из данной системы уравнений, выбирая одну из координат произвольно и решая после этого систему двух уравнений втносителыю оставшихся двух координат.

Для отыскания направляющего вектора прямой заметим, что этот вектор, направленный по линии пересечения данных плоскостей, должен быть перпендикулярным к обоим нормальным векторам этих плоскостей. Обратно, всякий вектор, перпендикулярный к параллелен обеим плоскостям, а следовательно, и данной прямой.

Но векторное произведение также обладает этим свойством. Поэтому за направляющий вектор прямой можно принять векторное произведение нормальных векторов данных плоскостей.

Пример 1. Привести к каноническому виду уравнения прямой

Выберем произвольно одну из координат. Пусть, иапример, . Тогда

откуда Итак, мы нашли точку (2, 0, 1), лежащую на прямой,

Находя теперь векторное произведение векторов получаем направляющий вектор прямой Поэтому канонические уравнения будут:

Замечание. От общих уравнений прямой вида (7) можно перейти к каноническим, и не прибегая к векторному методу.

Предварительно остановимся несколько подробнее на уравнениях

Выразим из них х и у через . Тогда получим:

где положено

Уравнения (6) называются уравнениями прямой в проекциях на плоскости

Установим геометрический смысл постоянных М и N: М представляет собой угловой коэффициент проекции данной прямой на плоскость координат (тангенс угла этой проекции с осью Oz), а N есть угловой коэффициент проекции данной прямой на плоскость координат (тангенс угла этой проекции с осью Oz). Таким образом, числа определяют направления проекций данной прямой линии на две плоскости координат, а значит, они характеризуют и направление самой данной прямой. Поэтому числа М и N называют угловыми коэффициентами данной прямой.

Чтобы выяснить геометрический смысл постоянных положим в уравнениях (6) прямой линии тогда получим: т. е. точка лежит на данной прямой. Очевидно, эта точка есть точка пересечения данной прямой с плоскостью Итак, суть координаты следа данной прямой линии на плоскости координат

Теперь легко сделать переход от уравнений в проекциях к каноническим. Пусть, например, даны уравнения (6). Решая эти уравнения относительно , найдем:

откуда непосредственно получаем канонические уравнения в виде

Пример 2. Привести канонические уравнения прямой

к уравнениям в проекциях на плоскости

Данные уравнения переписываем в виде

Решая первое из этих уравнений относительно х, а второе относительно у, найдем искомые уравнения в проекциях:

Пример 3. Привести уравнения в ппоекциях

к каноническому виду.

Решая данные уравнения относительно , получим.

Мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1


Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.

Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имеет только тривиальное решение , если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Чтобы окончательно закрепить алгоритм, разберём финальное задание:

Пример 7

Решить однородную систему, ответ записать в векторной форме.

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) У первой строки сменили знак. Ещё раз заостряю внимание на неоднократно встречавшемся приёме, который позволяет существенно упростить следующее действие.

(1) Ко 2-й и 3-й строкам прибавили первую строку. К 4-й строке прибавили первую строку, умноженную на 2.

(3) Последние три строки пропорциональны, две из них удалили.

В результате получена стандартная ступенчатая матрица, и решение продолжается по накатанной колее:

– базисные переменные;
– свободные переменные.

Выразим базисные переменные через свободные переменные. Из 2-го уравнения:

– подставим в 1-е уравнение:

Таким образом, общее решение:

Поскольку в рассматриваемом примере три свободные переменные, то фундаментальная система содержит три вектора.

Подставим тройку значений в общее решение и получим вектор , координаты которого удовлетворяют каждому уравнению однородной системы. И снова повторюсь, что крайне желательно проверять каждый полученный вектор – времени займет не так много, а от ошибок убережёт стопроцентно.

Для тройки значений находим вектор

И, наконец, для тройки получаем третий вектор:

Ответ : , где

Желающие избежать дробных значений могут рассмотреть тройки и получить ответ в эквивалентном виде:

К слову о дробях. Посмотрим на полученную в задаче матрицу и зададимся вопросом – нельзя ли упростить дальнейшее решение? Ведь здесь мы сначала выразили через дроби базисную переменную , потом через дроби базисную переменную , и, надо сказать, процесс это был не самый простой и не самый приятный.

Второй вариант решения :

Идея состоит в том, чтобы попытаться выбрать другие базисные переменные . Посмотрим на матрицу и заметим две единицы в третьем столбце. Так почему бы не получить ноль вверху? Проведём ещё одно элементарное преобразование:

Системы линейных уравнений, у которой все свободные члены равны нулю, называются однородными :

Любая однородная система всегда совместна, поскольку всегда обладает нулевым (тривиальным ) решением. Возникает вопрос, при каких условиях однородная система будет иметь нетривиальное решение.

Теорема 5.2. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг основной матрицы меньше числа ее неизвестных.

Следствие . Квадратная однородная система имеет нетривиальное решение тогда и только тогда, когда определитель основной матрицы системы не равен нулю.

Пример 5.6. Определить значения параметра l, при которых система имеет нетривиальные решения, и найти эти решения:

Решение . Эта система будет иметь нетривиальное решение тогда, когда определитель основной матрицы равен нулю:

Таким образом, система нетривиальна, когда l=3 или l=2. При l=3 ранг основной матрицы системы равен 1. Тогда оставляя только одно уравнение и полагая, что y =a и z =b , получим x=b-a , т.е.

При l=2 ранг основной матрицы системы равен 2. Тогда, выбирая в качестве базисного минор:

получим упрощенную систему

Отсюда находим, что x=z /4, y=z /2. Полагая z =4a , получим

Множество всех решений однородной системы обладает весьма важным линейным свойством : если столбцы X 1 и X 2 - решения однородной системы AX = 0 , то всякая их линейная комбинация aX 1 + bX 2 также будет решением этой системы . Действительно, поскольку AX 1 = 0 и AX 2 = 0 , то A (aX 1 + bX 2) = aAX 1 + bAX 2 = a · 0 + b · 0 = 0. Именно вследствие этого свойства, если линейная система имеет более одного решения, то этих решений будет бесконечно много.

Линейно независимые столбцы E 1 , E 2 , E k , являющиеся решениями однородной системы, называется фундаментальной системой решений однородной системы линейных уравнений, если общее решение этой системы можно записать в виде линейной комбинации этих столбцов:

Если однородная система имеет n переменных, а ранг основной матрицы системы равен r , то k = n-r .

Пример 5.7. Найти фундаментальную систему решений следующей системы линейных уравнений:

Решение . Найдем ранг основной матрицы системы:

Таким образом, множество решений данной системы уравнений образует линейное подпространство размерности n - r = 5 - 2 = 3. Выберем в качестве базисного минор

Тогда оставляя только базисные уравнения (остальные будут линейной комбинацией этих уравнений) и базисные переменные (осталь-ные, так называемые свободные, переменные переносим вправо), по-лучим упрощенную систему уравнений:

Полагая, x 3 = a , x 4 = b , x 5 = c , находим


Полагая a = 1, b = c = 0, получим первое базисное решение; полагая b = 1, a = c = 0, получим второе базисное решение; полагая c = 1, a = b = 0, получим третье базисное решение. В результате, нормальная фундаментальная система решений примет вид

С использованием фундаментальной системы общее решение однородной системы можно записать в виде

X = aE 1 + bE 2 + cE 3 . à

Отметим некоторые свойства решений неоднородной системы линейных уравнений AX=B и их взаимосвязь соответствующей однородной системой уравнений AX = 0.

Общее решение неоднородной системы равно сумме общего решения соответствующей однородной системы AX = 0 и произвольного частного решения неоднородной системы . Действительно, пусть Y 0 произвольное частное решение неоднородной системы, т.е. AY 0 = B , и Y - общее решение неоднородной системы, т.е. AY = B . Вычитая одно равенство из другого, получим
A (Y-Y 0) = 0, т.е. Y - Y 0 есть общее решение соответствующей однородной системы AX =0. Следовательно, Y - Y 0 = X , или Y = Y 0 + X . Что и требовалось доказать.

Пусть неоднородная система имеет вид AX = B 1 + B 2 . Тогда общее решение такой системы можно записать в виде X = X 1 + X 2 , где AX 1 = B 1 и AX 2 = B 2 . Это свойство выражает универсальное свойство вообще любых линейных систем (алгебраических, дифференциальных, функциональных и т.д.). В физике это свойство называется принципом суперпозиции , в электро- и радиотехнике - принципом наложения . Например, в теории линейных электрических цепей ток в любом контуре может быть получен как алгебраическая сумма токов, вызываемых каждым источником энергии в отдельности.

Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n .

Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида:

Тогда n - r линейно независимыми вектор-решениями будут:

а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему.

В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерности n - r ; - базис этого подпространства.

Система m линейных уравнений с n неизвестными (или, линейная система

Здесь x 1 , x 2 , …, x n a 11 , a 12 , …, a mn - коэффициенты системы - иb 1 , b 2 , … b m a ij i ) и неизвестного (j

Система (1) называется однородной b 1 = b 2 = … = b m = 0), иначе -неоднородной .

Система (1) называется квадратной , если число m уравнений равно числу n неизвестных.

Решение системы (1) - совокупность n чисел c 1 , c 2 , …, c n , таких что подстановка каждого c i вместо x i в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной несовместной

Решения c 1 (1) , c 2 (1) , …, c n (1) и c 1 (2) , c 2 (2) , …, c n различными

c 1 (1) = c 1 (2) , c 2 (1) = c 2 (2) , …, c n (1) = c n (2) .

определённой неопределённой . Если уравнений больше, чем неизвестных, она называется переопределённой .

Решение систем линейных уравнений

Решение матричных уравнений ~ Метод Гаусса

Способы решения систем линейных уравнений делятся на две группы:

1. точные методы , представляющие собой конечные алгоритмы для вычисления корней системы (решение систем с помощью обратной матрицы, правило Крамера, метод Гаусса и др.),

2. итерационные методы , позволяющие получить решение системы с заданной точностью путем сходящихся итерационных процессов (метод итерации, метод Зейделя и др.).

Вследствие неизбежных округлений результаты даже точных методов являются приближенными. При использовании итерационных методов, сверх того, добавляется погрешность метода.

Эффективное применение итерационных методов существенно зависит от удачного выбора начального приближения и быстроты сходимости процесса.

Решение матричных уравнений

Рассмотрим систему n линейных алгебраических уравнений относительно n неизвестных х 1 , х 2 , …, х n :

. (15)

Матрица А , столбцами которой являются коэффициенты при соответствующих неизвестных, а строками - коэффициенты при неизвестных в соответствующем уравнении, называется матрицей системы ; матрица-столбец b , элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы . Матрица-столбец х , элементы которой - искомые неизвестные, называется решением системы .

Если матрица А - неособенная, то есть det A н е равен 0 то система (13), или эквивалентное ей матричное уравнение (14), имеет единственное решение.

В самом деле, при условии det A не равно 0 существует обратная матрица А -1 . Умножая обе части уравнения (14) на матрицу А -1 получим:

(16)

Формула (16) дает решение уравнения (14) и оно единственно.

Системы линейных уравнений удобно решать с помощью функции lsolve .

lsolve(А, b )

Возвращается вектор решения x такой, что Ах = b.

Аргументы:

А - квадратная, не сингулярная матрица.

b - вектор, имеющий столько же рядов, сколько рядов в матрице А .

На Рисунке 8 показано решение системы трех линейных уравнений относительно трех неизвестных.

Метод Гаусса

Метод Гаусса, его еще называют методом Гауссовых исключений, состоит в том, что систему (13) приводят последовательным исключением неизвестных к эквивалентной системе с треугольной матрицей:

В матричной записи это означает, что сначала (прямой ход метода Гаусса) элементарными операциями над строками приводят расширенную матрицу системы к ступенчатому виду:

а затем (обратный ход метода Гаусса) эту ступенчатую матрицу преобразуют так, чтобы в первых n столбцах получилась единичная матрица:

.

Последний, (n + 1) столбец этой матрицы содержит решение системы (13).

В Mathcad прямой и обратный ходы метода Гаусса выполняет функция rref (A ).

На Рисунке 9 показано решение системы линейных уравнений методом Гаусса, в котором используются следующие функции:

rref(A )

Возвращается ступенчатая форма матрицы А .

augment(A , В )

Возвращается массив, сформированный расположением A иВ бок о бок. Массивы A иВ должны иметь одинаковое число строк.

submatrix(A, ir, jr, ic, jc )

Возвращается субматрица, состоящая из всех элементов с ir по jr и столбцах с ic по jc. Удостоверьтесь, что ir jr и

ic jc, иначе порядок строк и (или) столбцов будет обращен.

Рисунок 9.

Описание метода

Для системы n линейных уравнений с n неизвестными (над произвольным полем)

с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2,...,bn и x1,x2,...,xn, либо набор c1,c2,...,cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы дляопределителя Грама и Леммы Накаямы.

35) Теорема Кронекера-Капелли
Для того чтобы система m неоднородных линейных уравнений с n неизвестными была совместной, необходимо и достаточно, чтобы Доказательство необходимости. Пусть система (1.13) совместна, то есть существуют такие числа х 1 =α 1 , х 2 =α 2 , …, х n =α n , что (1.15) Вычтем из последнего столбца расширенной матрицы ее первый столбец, умноженный на α 1 , второй – на α 2 , …, n-ый – умноженный на α n , то есть из последнего столбца матрицы (1.14) следует вычесть левые части равенств (1.15). Тогда получим матрицу ранг которой в результате элементарных преобразований не изменится и . Но очевидно, и, значит, Доказательство достаточности. Пусть и пусть для определенности не равный нулю минор порядка r расположен в левом верхнем углу матрицы: Это означает, что остальные строки матрицы могут быть получены как линейные комбинации первых r строк, то есть m-r строк матрицы можно представить в виде сумм первых r строк, умноженных на некоторые числа. Но тогда первые r уравнений системы (1.13) самостоятельны, а остальные являются их следствиями, то есть решение системы первых r уравнений автоматически является решением остальных уравнений. Возможны два случая. 1. r=n. Тогда система, состоящая из первых r уравнений, имеет одинаковое число уравнений и неизвестных и совместна, причем решение ее единственно. 2. r (1.16) «Свободным» неизвестным x r +1 , x r +2 , …, x n можно придать какие угодно значения. Тогда соответствующие значения получают неизвестные x 1 , x 2 , …, x r . Система (1.13) и в этом случае совместная, но неопределенная. Замечание. Отличный от нуля минор порядка r, где rх 1 , х 2 , …, х r так же называют базисными, остальные – свободными. Систему (1.16) называют укороченной. Если свободные неизвестные обозначить х r +1 =c 1 , х r +2 =c 2 , …, х n =c n - r , то базисные неизвестные будут от них зависеть, то есть решение системы m уравнений с n неизвестными будет иметь вид X = (x 1 (c 1 , …, c n - r ), x 2 (c 1 , …, c n - r ), …, x r (c 1 , …, c n - r ), c 1 , c 2 , …, c n - r ) T , где значок Т означает транспонирование. Такое решение системы называется общим.

36)ус-е определенности, неопределенности
Система m линейных уравнений с n неизвестными (или, линейная система ) в линейной алгебре - это система уравнений вида

Здесь x 1 , x 2 , …, x n - неизвестные, которые надо определить. a 11 , a 12 , …, a mn - коэффициенты системы - и b 1 , b 2 , … b m - свободные члены - предполагаются известными. Индексы коэффициентов (a ij ) системы обозначают номера уравнения (i ) и неизвестного (j ), при котором стоит этот коэффициент, соответственно .

Система (1) называется однородной , если все её свободные члены равны нулю (b 1 = b 2 = … = b m = 0), иначе - неоднородной .

Система (1) называется совместной , если она имеет хотя бы одно решение, и несовместной , если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c 1 (1) , c 2 (1) , …, c n (1) и c 1 (2) , c 2 (2) , …, c n (2) совместной системы вида (1) называются различными , если нарушается хотя бы одно из равенств:

c 1 (1) = c 1 (2) , c 2 (1) = c 2 (2) , …, c n (1) = c n (2) .

Совместная система вида (1) называется определённой , если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой

37)Решение систем линейных уравнений методом Гаусса

Пусть исходная система выглядит следующим образом

Матрица A называется основной матрицей системы, b - столбцом свободных членов.

Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду(эти же преобразования нужно применять к столбцу свободных членов):

Тогда переменные называются главными переменными . Все остальные называются свободными .

[править]Условие совместности

Упомянутое выше условие для всех может быть сформулировано в качестве необходимого и достаточного условия совместности:

Напомним, что рангом совместной системы называется ранг её основной матрицы (либо расширенной, так как они равны).

Алгоритм

Описание

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа.

§ На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

§ На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Метод Гаусса требует порядка O (n 3) действий.

Этот метод опирается на:

38)Теорема Кронекера-Капелли.
Система совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.

Рассмотрим однородную систему m линейных уравнений с n переменными:

(15)

Система однородных линейных уравнений всегда совместна, т.к. она всегда имеет нулевое (тривиальное) решение (0,0,…,0).

Если в системе (15) m=n и , то система имеет только нулевое решение, что следует из теоремы и формул Крамера.

Теорема 1 . Однородная система (15) имеет нетривиальное решение тогда и только тогда, когда ранг ее матрицы меньше числа переменных,т.е. r (A )< n .

Доказательство . Существование нетривиального решения системы (15) эквивалентно линейной зависимости столбцов матрицы системы (т.е. существуют такие числа х 1 , x 2 ,…,x n , не все равные нулю, что справедливы равенства (15)).

По теореме о базисном миноре столбцы матрицы линейно зависимы , когда не все столбцы этой матрицы являются базисными, т.е. , когда порядок r базисного минора матрицы меньше числа n ее столбцов. Ч.т.д.

Следствие . Квадратная однородная система имеет нетривиальные решения , когда |А|=0.

Теорема 2 . Если столбцы х (1) ,х (2) ,…,х (s) решения однородной системы АХ=0, то любая их линейная комбинация так же является решением этой системы.

Доказательство . Рассмотрим любую комбинацию решений:

Тогда АХ=А()===0. ч.т.д.

Следствие 1. Если однородная система имеет нетривиальное решение, то она имеет бесконечно много решений.

Т.о. необходимо найти такие решения х (1) ,х (2) ,…,х (s) системы Ах=0, чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом.

Определение. Система k=n-r (n –количество неизвестных в системе, r=rg A) линейно независимых решений х (1) ,х (2) ,…,х (k) системы Ах=0 называется фундаментальной системой решений этой системы.

Теорема 3 . Пусть дана однородная система Ах=0 с n неизвестными и r=rg A. Тогда существует набор из k=n-r решений х (1) ,х (2) ,…,х (k) этой системы, образующих фундаментальную систему решений.

Доказательство . Не ограничивая общности, можно считать, что базисный минор матрицы А расположен в верхнем левом углу. Тогда, по теореме о базисном миноре, остальные строки матрицы А являются линейными комбинациями базисных строк. Это означает, что если значения х 1 ,х 2 ,…,x n удовлетворяют первым r уравнениям т.е. уравнениям, соответствующим строкам базисного минора), то они удовлетворяют и другим уравнениям. Следовательно, множество решений системы не изменится, если отбросить все уравнения начиная с (r+1)-го. Получим систему:

Перенесем свободные неизвестные х r +1 ,х r +2 ,…,x n в правую часть, а базисные х 1 ,х 2 ,…,x r оставим в левой:

(16)

Т.к. в этом случае все b i =0, то вместо формул

c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13), получим:

c j =-(c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r (13)

Если задать свободным неизвестным х r +1 ,х r +2 ,…,x n произвольные значения, то относительно базисных неизвестных получим квадратную СЛАУ с невырожденной матрицей, у которой существует единственное решение. Т.о., любое решение однородной СЛАУ однозначно определяется значениями свободных неизвестных х r +1 ,х r +2 ,…,x n . Рассмотрим следующие k=n-r серий значений свободных неизвестных:

1, =0, ….,=0,

1, =0, ….,=0, (17)

………………………………………………

1, =0, ….,=0,

(Номер серии указан верхним индексом в скобках, а серии значений выписаны в виде столбцов. В каждой серии =1, еслиi=j и =0, еслиij.

i-й серии значений свободных неизвестных однозначно соответствуют значения ,,…,базисных неизвестных. Значения свободных и базисных неизвестных в совокупности дают решения системы (17).

Покажем, что столбцы е i =,i=1,2,…,k (18)

образуют фундаментальную систему решений.

Т.к. эти столбцы по построению являются решениями однородной системы Ах=0 и их количество равно k, то остается доказать линейную независимость решений (16). Пусть есть линейная комбинация решенийe 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)), равная нулевому столбцу:

1 e 1 +  2 e 2 +…+  k e k ( 1 х (1) + 2 х (2) +…+ k х (k) =0)

Тогда левая часть этого равенства является столбцом, компоненты которого с номерами r+1,r+2,…,n равны нулю. Но (r+1)-я компоненты равна  1 1+ 2 0+…+ k 0= 1 . Аналогично, (r+2)-я компонента равна  2 ,…, k-я компонента равна  k . Поэтому  1 =  2 = …= k =0, что и означает линейную независимость решений e 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)).Ч.т.д.

Построенная фундаментальная система решений (18) называется нормальной . В силу формулы (13) она имеет следующий вид:

(20)

Следствие 2 . Пусть e 1 , e 2 ,…, e k -нормальная фундаментальная система решений однородной системы, тогда множество всех решений можно описать формулой:

х=с 1 e 1 +с 2 e 2 +…+с k e k (21)

где с 1 ,с 2 ,…,с k – принимают произвольные значения.

Доказательство . По теореме 2 столбец (19) является решением однородной системы Ах=0. Остается доказать, что любое решение этой системы можно представить в виде (17). Рассмотрим столбецх =у r +1 e 1 +…+y n e k . Этот столбец совпадает со столбцом у по элементам с номерами r+1,…,n и является решением (16). Поэтому столбцы х и у совпадают, т.к. решения системы (16) определяются однозначно набором значений ее свободных неизвестных x r +1 ,…,x n , а у столбцов у и х эти наборы совпадают. Следовательно, у =х = у r +1 e 1 +…+y n e k , т.е. решение у является линейной комбинацией столбцов e 1 ,…,y n нормальной ФСР. Ч.т.д.

Доказанное утверждение справедливо не только для нормальной ФСР, но и для произвольной ФСР однородной СЛАУ.

Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r - общее решение системы линейных однородных уравнений

Где Х 1 ,Х 2 ,…,Х n - r – любая фундаментальная система решений,

c 1 ,c 2 ,…,с n - r – произвольные числа.

Пример . (с. 78)

Установим связь между решениями неоднородной СЛАУ (1) и соответствующей ей однородной СЛАУ(15)

Теорема 4 . Сумма любого решения неоднородной системы (1) и соответствующей ей однородной системы (15) является решением системы (1).

Доказательство . Если c 1 ,…,c n – решение системы (1), а d 1 ,…,d n - решение системы (15), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 +d 1 ,…,c n +d n , получим:

B i +0=b i ч.т.д.

Теорема 5 . Разность двух произвольных решений неоднородной системы (1) является решением однородной системы (15).

Доказательство . Если c 1 ,…,c n и c 1 ,…,c n – решения системы (1), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 -с 1 ,…,c n -с n , получим:

B i -b i =0 ч.т.д.

Из доказанных теорем следует, что общее решение системы m линейных однородных уравнений с n переменными равно сумме общего решения соответствующей ей системы однородных линейных уравнений (15) и произвольного числа частного решения этой системы (15).

Х неод. общ. одн. част. неодн. (22)

В качестве частного решения неоднородной системы естественно взять то его решение, которое получается, если в формулах c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13) положить равными нулю все числа c r +1 ,…,c n ,т.е.

Х 0 =(,…,,0,0,…,0) (23)

Складывая это частное решение с общим решением Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r соответствующей однородной системы, получаем:

Х неод. 0 1 Х 1 2 Х 2 +…+С n - r Х n - r (24)

Рассмотрим систему двух уравнений с двумя переменными:

в которой хотя бы один из коэф. a ij 0.

Для решения исключим х 2 , умножив первое уравнение на а 22 , а второе – на (-а 12) и сложив их: Исключим х 1 , умножив первое уравнение на (-а 21), а второе – на а 11 и сложив их: Выражение в скобках – определитель

Обозначив ,, тогда система примет вид:, т.о., если, то система имеет единственное решение:,.

Если Δ=0, а (или), то система несовместна, т.к. приводится к видуЕсли Δ=Δ 1 =Δ 2 =0, то система неопределенная, т.к. приводится к виду