Как составить уравнения прямой в пространстве?

УравнениЯ прямой в пространстве

Аналогично «плоской» прямой, существует несколько способов, которыми мы можем задать прямую в пространстве. Начнём с канонов – точки и направляющего вектора прямой:

Если известна некоторая точка пространства , принадлежащая прямой, и направляющий вектор данной прямой, то канонические уравнения этой прямой выражаются формулами :

Приведённая запись предполагает, что координаты направляющего вектора не равны нулю . Что делать, если одна или две координаты нулевые, мы рассмотрим чуть позже.

Как и в статье Уравнение плоскости , для простоты будем считать, что во всех задачах урока действия проводятся в ортонормированном базисе пространства.

Пример 1

Составить канонические уравнения прямой по точке и направляющему вектору

Решение : Канонические уравнения прямой составим по формуле:

Ответ :

И ежу понятно… хотя, нет, ежу не понятно вообще ничего.

Что следует отметить в этом очень простом примере? Во-первых, полученные уравнения НЕ НАДО сокращать на единицу: . Сократить, точнее, можно, но это непривычно режет глаз и создаёт неудобства в ходе решения задач.

А во-вторых, в аналитической геометрии неизбежны две вещи – это проверка и зачёт:

На всякий случай смотрим на знаменатели уравнений и сверяемся – правильно ли там записаны координаты направляющего вектора . Нет, не подумайте, у нас не урок в детском садике «Тормозок». Данный совет очень важен, поскольку позволяет полностью исключить ошибку по невнимательности. Никто не застрахован, а вдруг неправильно переписали? Наградят премией Дарвина по геометрии.

Получены верные равенства, значит, координаты точки удовлетворяют нашим уравнениям, и сама точка действительно принадлежит данной прямой.

Проверка очень легко (и быстро!) выполняется устно.

В ряде задач требуется найти какую-нибудь другую точку , принадлежащую данной прямой. Как это сделать?

Берём полученные уравнения и мысленно «отщипываем», например, левый кусочек: . Теперь этот кусочек приравниваем к любому числу (помним, что ноль уже был), например, к единице: . Так как , то и два других «куска» тоже должны быть равны единице. По сути, нужно решить систему:

Проверим, удовлетворяет ли найденная точка уравнениям :

Получены верные равенства, значит, точка действительно лежит на данной прямой.

Выполним чертёж в прямоугольной системе координат. Заодно вспомним, как правильно откладывать точки в пространстве:

Строим точку :
– от начала координат в отрицательном направлении оси откладываем отрезок первой координаты (зелёный пунктир);
– вторая координата нулевая, поэтому «не дёргаемся» с оси ни влево, ни вправо;
– в соответствие с третьей координатой отмеряем три единицы вверх (фиолетовый пунктир).



Строим точку : отмеряем две единицы «на себя» (желтый пунктир), одну единицу вправо (синий пунктир) и две единицы вниз (коричневый пунктир). Коричневый пунктир и сама точка наложились на координатную ось, обратите внимание, что они находятся в нижнем полупространстве и ПЕРЕД осью .

Сама прямая проходит над осью и, если меня не подводит глазомер, над осью . Не подводит, убедился аналитически. Если бы прямая проходила ЗА осью , то следовало бы стереть ластиком частичку линии сверху и снизу точки скрещивания.

У прямой бесконечно много направляющих векторов, например:
(красная стрелка)

Получился в точности исходный вектор , но это чистая случайность, такую уж я выбрал точку . Все направляющие векторы прямой коллинеарны, и их соответствующие координаты пропорциональны (более подробно – см. Линейная (не) зависимость векторов. Базис векторов ). Так, векторы тоже будут направляющими векторами данной прямой.

Дополнительную информацию о построении трёхмерных чертежей на клетчатой бумаге можно найти в начале методички Графики и свойства функций . В тетради разноцветные пунктирные дорожки к точкам (см. чертёж) обычно тонко прочерчивают простым карандашом тем же пунктиром.

Разберёмся с частными случаями, когда одна или две координаты направляющего вектора нулевые. Попутно продолжаем тренировку пространственного зрения, которая началась в начале урока Уравнение плоскости . И вновь я расскажу вам сказку о голом короле – нарисую пустую систему координат и буду убеждать вас, что там есть пространственные прямые =)

Проще перечислить все шесть случаев:

1) Для точки и направляющего вектора канонические уравнения прямой распадаются на три отдельных уравнения: .

Или короче:

Пример 2 : составим уравнения прямой по точке и направляющему вектору :

Что это за прямая? Направляющий вектор прямой коллинеарен орту , значит, данная прямая будет параллельна оси . Канонические уравнения следует понимать так:
а) – «игрек» и «зет» постоянны , равны конкретным числам ;
б) переменная «икс» может принимать любые значения: (на практике данное уравнение, как правило, не записывают).

В частности, уравнения задают саму ось . Действительно, «икс» принимает любое значение, а «игрек» и «зет» всегда равны нулю.

Рассматриваемые уравнения можно интерпретировать и другим образом: посмотрим, например, на аналитическую запись оси абсцисс: . Ведь это уравнения двух плоскостей! Уравнение задаёт координатную плоскость , а уравнение – координатную плоскость . Правильно думаете – данные координатные плоскости пересекаются по оси . Способ, когда прямая в пространстве задаётся пересечением двух плоскостей, мы рассмотрим в самом конце урока.

Два похожих случая:

2) Канонические уравнения прямой, проходящей через точку параллельно вектору , выражаются формулами .

Такие прямые будут параллельны координатной оси . В частности, уравнения задают координатную саму ось ординат.

3) Канонические уравнения прямой, проходящей через точку параллельно вектору , выражаются формулами .

Данные прямые параллельны координатной оси , а уравнения задают саму ось аппликат.

Загоним в стойло вторую тройку:

4) Для точки и направляющего вектора канонические уравнения прямой распадаются на пропорцию и уравнение плоскости .

Пример 3 : составим уравнения прямой по точке и направляющему вектору .

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m , n и p являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m , n и p не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy и Oz равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy и Oz , т. е. плоскости yOz .

Пример 1. Составить уравнения прямой в пространстве, перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz .

Решение. Найдём точку пересечения данной плоскости с осью Oz . Так как любая точка, лежащая на оси Oz , имеет координаты , то, полагая в заданном уравнении плоскости x = y = 0 , получим 4z - 8 = 0 или z = 2 . Следовательно, точка пересечения данной плоскости с осью Oz имеет координаты (0; 0; 2) . Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A = (0; 0; 2) в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2. Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy .

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3. Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz и xOz .

Точка пересечения прямой с плоскостью yOz имеет абсциссу x = 0 . Поэтому, полагая в данной системе уравнений x = 0 , получим систему с двумя переменными:

Её решение y = 2 , z = 6 вместе с x = 0 определяет точку A (0; 2; 6) искомой прямой. Полагая затем в заданной системе уравнений y = 0 , получим систему

Её решение x = -2 , z = 0 вместе с y = 0 определяет точку B (-2; 0; 0) пересечения прямой с плоскостью xOz .

Теперь запишем уравнения прямой, проходящей через точки A (0; 2; 6) и B (-2; 0; 0) :

,

или после деления знаменателей на -2:

,

Одним из видов уравнений прямой в пространстве является каноническое уравнение. Мы рассмотрим это понятие во всех подробностях, поскольку знать его необходимо для решения многих практических задач.

В первом пункте мы сформулируем основные уравнения прямой, расположенной в трехмерном пространстве, и приведем несколько примеров. Далее покажем способы вычисления координат направляющего вектора при заданных канонических уравнениях и решение обратной задачи. В третьей части мы расскажем, как составляется уравнение прямой, проходящей через 2 заданные точки в трехмерном пространстве, а в последнем пункте укажем на связи канонических уравнений с другими. Все рассуждения будут проиллюстрированы примерами решения задач.

О том, что вообще из себя представляют канонические уравнения прямой, мы уже говорили в статье, посвященной уравнениям прямой на плоскости. Случай с трехмерным пространством мы разберем по аналогии.

Допустим, у нас есть прямоугольная система координат O x y z , в которой задана прямая. Как мы помним, задать прямую можно разными способами. Используем самый простой из них – зададим точку, через которую будет проходить прямая, и укажем направляющий вектор. Если обозначить прямую буквой a , а точку M , то можно записать, что M 1 (x 1 , y 1 , z 1) лежит на прямой a и направляющим вектором этой прямой будет a → = (a x , a y , a z) . Чтобы множество точек M (x , y , z) определяло прямую a , векторы M 1 M → и a → должны быть коллинеарными,

Если мы знаем координаты векторов M 1 M → и a → , то можем записать в координатной форме необходимое и достаточное условие их коллинеарности. Из первоначальных условий нам уже известны координаты a → . Для того чтобы получить координаты M 1 M → , нам необходимо вычислить разность между M (x , y , z) и M 1 (x 1 , y 1 , z 1) . Запишем:

M 1 M → = x - x 1 , y - y 1 , z - z 1

После этого нужное нам условие мы можем сформулировать так: M 1 M → = x - x 1 , y - y 1 , z - z 1 и a → = (a x , a y , a z) : M 1 M → = λ · a → ⇔ x - x 1 = λ · a x y - y 1 = λ · a y z - z 1 = λ · a z

Здесь значением переменной λ может быть любое действительное число или ноль. Если λ = 0 , то M (x , y , z) и M 1 (x 1 , y 1 , z 1) совпадут, что не противоречит нашим рассуждениям.

При значениях a x ≠ 0 , a y ≠ 0 , a z ≠ 0 мы можем разрешить относительно параметра λ все уравнения системы x - x 1 = λ · a x y - y 1 = λ · a y z - z 1 = λ · a z

Между правыми частями после этого можно будет поставить знак равенства:

x - x 1 = λ · a x y - y 1 = λ · a y z - z 1 = λ · a z ⇔ λ = x - x 1 a x λ = y - y 1 a y λ = z - z 1 a z ⇔ x - x 1 a x = y - y 1 a y = z - z 1 a z

В итоге у нас получились уравнения x - x 1 a x = y - y 1 a y = z - z 1 a z , с помощью которых можно определить искомую прямую в трехмерном пространстве. Это и есть нужные нам канонические уравнения.

Такая запись используется даже при нулевых значениях одного или двух параметров a x , a y , a z , поскольку она в этих случаях она также будет верна. Все три параметра не могут быть равны 0 , поскольку направляющий вектор a → = (a x , a y , a z) нулевым не бывает.

Если один-два параметра a равны 0 , то уравнение x - x 1 a x = y - y 1 a y = z - z 1 a z носит условный характер. Его следует считать равным следующей записи:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , λ ∈ R .

Частные случаи канонических уравнений мы разберем в третьем пункте статьи.

Из определения канонического уравнения прямой в пространстве можно сделать несколько важных выводов. Рассмотрим их.

1) если исходная прямая будет проходить через две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , то канонические уравнения примут следующий вид:

x - x 1 a x = y - y 1 a y = z - z 1 a z или x - x 2 a x = y - y 2 a y = z - z 2 a z .

2) поскольку a → = (a x , a y , a z) является направляющим вектором исходной прямой, то таковыми будут являться и все векторы μ · a → = μ · a x , μ · a y , μ · a z , μ ∈ R , μ ≠ 0 . Тогда прямая может быть определена с помощью уравнения x - x 1 a x = y - y 1 a y = z - z 1 a z или x - x 1 μ · a x = y - y 1 μ · a y = z - z 1 μ · a z .

Вот несколько примеров таких уравнений с заданными значениями:

Пример 1 Пример 2

Как составить каноническое уравнение прямой в пространстве

Мы выяснили, что канонические уравнения вида x - x 1 a x = y - y 1 a y = z - z 1 a z будут соответствовать прямой, проходящей через точку M 1 (x 1 , y 1 , z 1) , а вектор a → = (a x , a y , a z) будет для нее направляющим. Значит, если мы знаем уравнение прямой, то можем вычислить координаты ее направляющего вектора, а при условии заданных координат вектора и некоторой точки, расположенной на прямой, мы можем записать ее канонические уравнения.

Разберем пару конкретных задач.

Пример 3

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x + 1 4 = y 2 = z - 3 - 5 . Запишите координаты всех направляющих векторов для нее.

Решение

Чтобы получить координаты направляющего вектора, нам надо просто взять значения знаменателей из уравнения. Мы получим, что одним из направляющих векторов будет a → = (4 , 2 , - 5) , а множество всех подобных векторов можно сформулировать как μ · a → = 4 · μ , 2 · μ , - 5 · μ . Здесь параметр μ – любое действительное число (за исключением нуля).

Ответ: 4 · μ , 2 · μ , - 5 · μ , μ ∈ R , μ ≠ 0

Пример 4

Запишите канонические уравнения, если прямая в пространстве проходит через M 1 (0 , - 3 , 2) и имеет направляющий вектор с координатами - 1 , 0 , 5 .

Решение

У нас есть данные, что x 1 = 0 , y 1 = - 3 , z 1 = 2 , a x = - 1 , a y = 0 , a z = 5 . Этого вполне достаточно, чтобы сразу перейти к записи канонических уравнений.

Сделаем это:

x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ x - 0 - 1 = y - (- 3) 0 = z - 2 5 ⇔ ⇔ x - 1 = y + 3 0 = z - 2 5

Ответ: x - 1 = y + 3 0 = z - 2 5

Эти задачи – самые простые, потому что в них есть все или почти все исходные данные для записи уравнения или координат вектора. На практике чаще можно встретить те, в которых сначала нужно находить нужные координаты, а потом записывать канонические уравнения. Примеры таких задач мы разбирали в статьях, посвященных нахождению уравнений прямой, проходящей через точку пространства параллельно заданной, а также прямой, проходящей через некоторую точку пространства перпендикулярно плоскости.

Ранее мы уже говорили, что одно-два значения параметров a x , a y , a z в уравнениях могут иметь нулевые значения. При этом запись x - x 1 a x = y - y 1 a y = z - z 1 a z = λ приобретает формальный характер, поскольку мы получаем одну или две дроби с нулевыми знаменателями. Ее можно переписать в следующем виде (при λ ∈ R):

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Рассмотрим эти случаи подробнее. Допустим, что a x = 0 , a y ≠ 0 , a z ≠ 0 , a x ≠ 0 , a y = 0 , a z ≠ 0 , либо a x ≠ 0 , a y ≠ 0 , a z = 0 . В таком случае нужные уравнения мы можем записать так:

  1. В первом случае:
    x - x 1 0 = y - y 1 a y = z - z 1 a z = λ ⇔ x - x 1 = 0 y = y 1 + a y · λ z = z 1 + a z · λ ⇔ x - x 1 = 0 y - y 1 a y = z - z 1 a z = λ
  2. Во втором случае:
    x - x 1 a x = y - y 1 0 = z - z 1 a z = λ ⇔ x = x 1 + a x · λ y - y 1 = 0 z = z 1 + a z · λ ⇔ y - y 1 = 0 x - x 1 a x = z - z 1 a z = λ

    В третьем случае:
    x - x 1 a x = y - y 1 a y = z - z 1 0 = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ z - z 1 = 0 ⇔ z - z 1 = 0 x - x 1 a x = y - y 1 a y = λ

Получается, что при таком значении параметров нужные прямые находятся в плоскостях x - x 1 = 0 , y - y 1 = 0 или z - z 1 = 0 , которые располагаются параллельно координатным плоскостям (если x 1 = 0 , y 1 = 0 либо z 1 = 0). Примеры таких прямых показаны на иллюстрации.

Следовательно, мы сможем записать канонические уравнения немного иначе.

  1. В первом случае: x - x 1 0 = y - y 1 0 = z - z 1 a z = λ ⇔ x - x 1 = 0 y - y 1 = 0 z = z 1 + a z · λ , λ ∈ R
  2. Во втором: x - x 1 0 = y - y 1 a y = z - z 1 0 = λ ⇔ x - x 1 = 0 y = y 1 + a y · λ , λ ∈ R z - z 1 = 0
  3. В третьем: x - x 1 a x = y - y 1 0 = z - z 1 0 = λ ⇔ x = x 1 + a x · λ , λ ∈ R y = y 1 = 0 z - z 1 = 0

Во всех трех случаях исходные прямые будут совпадать с координатными осями или окажутся параллельными им: x 1 = 0 y 1 = 0 , x 1 = 0 z 1 = 0 , y 1 = 0 z 1 = 0 . Их направляющие векторы имеют координаты 0 , 0 , a z , 0 , a y , 0 , a x , 0 , 0 . Если обозначить направляющие векторы координатных прямых как i → , j → , k → , то направляющие векторы заданных прямых будут коллинеарными по отношению к ним. На рисунке показаны эти случаи:

Покажем на примерах, как применяются эти правила.

Пример 5

Найдите канонические уравнения, с помощью которых можно определить в пространстве координатные прямые O z , O x , O y .

Решение

Координатные векторы i → = (1 , 0 , 0) , j → = 0 , 1 , 0 , k → = (0 , 0 , 1) будут для исходных прямых направляющими. Также мы знаем, что наши прямые будут обязательно проходить через точку O (0 , 0 , 0) , поскольку она является началом координат. Теперь у нас есть все данные, чтобы записать нужные канонические уравнения.

Для прямой O x: x 1 = y 0 = z 0

Для прямой O y: x 0 = y 1 = z 0

Для прямой O z: x 0 = y 0 = z 1

Ответ: x 1 = y 0 = z 0 , x 0 = y 1 = z 0 , x 0 = y 0 = z 1 .

Пример 6

В пространстве задана прямая, которая проходит через точку M 1 (3 , - 1 , 12) . Также известно, что она расположена параллельно оси ординат. Запишите канонические уравнения этой прямой.

Решение

Учитывая условие параллельности, мы можем сказать, что вектор j → = 0 , 1 , 0 будет для нужной прямой направляющим. Следовательно, искомые уравнения будут иметь вид:

x - 3 0 = y - (- 1) 1 = z - 12 0 ⇔ x - 3 0 = y + 1 1 = z - 12 0

Ответ: x - 3 0 = y + 1 1 = z - 12 0

Допустим, что у нас есть две несовпадающие точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , через которые проходит прямая. Как в таком случае мы можем сформулировать для нее каноническое уравнение?

Для начала примем вектор M 1 M 2 → (или M 2 M 1 →) за направляющий вектор данной прямой. Поскольку у нас есть координаты нужных точек, сразу вычисляем координаты вектора:

M 1 M 2 → = x 2 - x 1 , y 2 - y 1 , z 2 - z 1

x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1

Получившиеся равенства – это и есть канонические уравнения прямой, проходящей через две заданные точки. Взгляните на иллюстрацию:

Приведем пример решения задачи.

Пример 7

в пространстве есть две точки с координатами M 1 (- 2 , 4 , 1) и M 2 (- 3 , 2 , - 5) , через которые проходит прямая. Запишите канонические уравнения для нее.

Решение

Согласно условиям, x 1 = - 2 , y 1 = - 4 , z 1 = 1 , x 2 = - 3 , y 2 = 2 , z 2 = - 5 . Нам требуется подставить эти значения в каноническое уравнение:

x - (- 2) - 3 - (- 2) = y - (- 4) 2 - (- 4) = z - 1 - 5 - 1 ⇔ x + 2 - 1 = y + 4 6 = z - 1 - 6

Если мы возьмем уравнения вида x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1 , то у нас получится: x - (- 3) - 3 - (- 2) = y - 2 2 - (- 4) = z - (- 5) - 5 - 1 ⇔ x + 3 - 1 = y - 2 6 = z + 5 - 6

Ответ: x + 3 - 1 = y - 2 6 = z + 5 - 6 либо x + 3 - 1 = y - 2 6 = z + 5 - 6 .

Преобразование канонических уравнений прямой в пространстве в другие виды уравнений

Иногда пользоваться каноническими уравнениями вида x - x 1 a x = y - y 1 a y = z - z 1 a z не очень удобно. Для решения некоторых задач лучше использовать запись x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ . В некоторых случаях более предпочтительно определить нужную прямую с помощью уравнений двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 . Поэтому в данном пункте мы разберем, как можно перейти от канонических уравнений к другим видам, если это требуется нам по условиям задачи.

Понять правила перехода к параметрическим уравнениям несложно. Сначала приравняем каждую часть уравнения к параметру λ и разрешим эти уравнения относительно других переменных. В итоге получим:

x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ ⇔ x - x 1 a x = λ y - y 1 a y = λ z - z 1 a z = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Значение параметра λ может быть любым действительным числом, ведь и x , y , z могут принимать любые действительные значения.

Пример 8

В прямоугольной системе координат в трехмерном пространстве задана прямая, которая определена уравнением x - 2 3 = y - 2 = z + 7 0 . Запишите каноническое уравнение в параметрическом виде.

Решение

Сначала приравниваем каждую часть дроби к λ .

x - 2 3 = y - 2 = z + 7 0 ⇔ x - 2 3 = λ y - 2 = λ z + 7 0 = λ

Теперь разрешаем первую часть относительно x , вторую – относительно y , третью – относительно z . У нас получится:

x - 2 3 = λ y - 2 = λ z + 7 0 = λ ⇔ x = 2 + 3 · λ y = - 2 · λ z = - 7 + 0 · λ ⇔ x = 2 + 3 · λ y = - 2 · λ z = - 7

Ответ: x = 2 + 3 · λ y = - 2 · λ z = - 7

Следующим нашим шагом будет преобразование канонических уравнений в уравнение двух пересекающихся плоскостей (для одной и той же прямой).

Равенство x - x 1 a x = y - y 1 a y = z - z 1 a z нужно для начала представить в виде системы уравнений:

x - x 1 a x = y - y 1 a y x - x 1 a x = z - z 1 a x y - y 1 a y = z - z 1 a z

Поскольку p q = r s мы понимаем как p · s = q · r , то можно записать:

x - x 1 a x = y - y 1 a y x - x 1 a x = z - z 1 a z y - y 1 a y = z - z 1 a z ⇔ a y · (x - x 1) = a x · (y - y 1) a z · (x - x 1) = a x · (z - z 1) a z · (y - y 1) = a y · (z - z 1) ⇔ ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0 a z · x - a x · z + a x · z 1 - a z · x 1 = 0 a z · y - a y · z + a y · z 1 - a z · y 1 = 0

В итоге у нас вышло, что:

x - x 1 a x = y - y 1 a y = z - z 1 a z ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0 a z · x - a x · z + a x · z 1 - a z · x 1 = 0 a z · y - a y · z + a y · z 1 - a z · y 1 = 0

Выше мы отмечали, что все три параметра a не могут одновременно быть нулевыми. Значит, ранг основной матрицы системы будет равен 2 , поскольку a y - a x 0 a z 0 - a x 0 a z - a y = 0 и один из определителей второго порядка не равен 0:

a y - a x a z 0 = a x · a z , a y 0 a z - a x = a x · a y , - a x 0 0 - a x = a x 2 a y - a x 0 a z = a y · a z , a y 0 0 - a y = - a y 2 , - a x 0 a z - a y = a x · a y a z 0 0 a z = a z 2 , a z - a x 0 - a y = - a y · a z , 0 - a x a z - a y = a x · a z

Это дает нам возможность исключить одно уравнение из наших расчетов. Таким образом, канонические уравнения прямой можно преобразовать в систему из двух линейных уравнений, которые будут содержать 3 неизвестных. Они и будут нужными нам уравнениями двух пересекающихся плоскостей.

Рассуждение выглядит довольно сложным, однако на практике все делается довольно быстро. Продемонстрируем это на примере.

Пример 9

Прямая задана каноническим уравнением x - 1 2 = y 0 = z + 2 0 . Напишите для нее уравнение пересекающихся плоскостей.

Решение

Начнем с попарного приравнивания дробей.

x - 1 2 = y 0 = z + 2 0 ⇔ x - 1 2 = y 0 x - 1 2 = z + 2 0 y 0 = z + 2 0 ⇔ ⇔ 0 · (x - 1) = 2 y 0 · (x - 1) = 2 · (z + 2) 0 · y = 0 · (z + 2) ⇔ y = 0 z + 2 = 0 0 = 0

Теперь исключаем из расчетов последнее уравнение, потому что оно будет верным при любых x , y и z . В таком случае x - 1 2 = y 0 = z + 2 0 ⇔ y = 0 z + 2 = 0 .

Это и есть уравнения двух пересекающихся плоскостей, которые при пересечении образуют прямую, заданную с помощью уравнения x - 1 2 = y 0 = z + 2 0

Ответ: y = 0 z + 2 = 0

Пример 10

Прямая задана уравнениями x + 1 2 = y - 2 1 = z - 5 - 3 , найдите уравнение двух плоскостей, пересекающихся по данной прямой.

Решение

Приравниваем дроби попарно.

x + 1 2 = y - 2 1 = z - 5 - 3 ⇔ x + 1 2 = y - 2 1 x + 1 2 = z - 5 - 3 y - 2 1 = z - 5 - 3 ⇔ ⇔ 1 · (x + 1) = 2 · (y - 2) - 3 · (x + 1) = 2 · (z - 5) - 3 · (y - 2) = 1 · (z - 5) ⇔ x - 2 y + 5 = 0 3 x + 2 z - 7 = 0 3 y + 7 - 11 = 0

Получаем, что определитель основной матрицы полученной системы будет равен 0:

1 - 2 0 3 0 2 0 3 1 = 1 · 0 · 1 + (- 2) · 2 · 0 + 0 · 3 · 3 - 0 · 0 · 0 - 1 · 2 · 3 - (- 2) · 3 · 1 = 0

Минор второго порядка нулевым при этом не будет: 1 - 2 3 0 = 1 · 0 - (- 2) · 3 = 6 . Тогда мы можем принять его в качестве базисного минора.

В итоге мы можем вычислить ранг основной матрицы системы x - 2 y + 5 = 0 3 x + 2 z - 7 = 0 3 y + z - 11 = 0 . Это будет 2. Третье уравнение исключаем из расчета и получаем:

x - 2 y + 5 = 0 3 x + 2 z - 7 = 0 3 y + z - 11 = 0 ⇔ x - 2 y + 5 = 0 3 x + 2 z - 7 = 0

Ответ: x - 2 y + 5 = 0 3 x + 2 z - 7 = 0

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


В прямоугольной системе координат на плоскости прямая линия может быть задана каноническим уравнением прямой. В этой статье мы сначала выведем , запишем канонические уравнения прямых на плоскости, которые параллельны координатным осям или совпадают с ними, а также приведем примеры. Далее покажем связь канонического уравнения прямой на плоскости с другими видами уравнения этой прямой. В заключении подробно рассмотрим решения характерных примеров и задач на составление канонического уравнения прямой на плоскости.

Навигация по странице.

Каноническое уравнение прямой на плоскости – описание и примеры.

Пусть на плоскости зафиксирована Oxy . Поставим себе задачу: получить уравнение прямой a , если - некоторая точка прямой a и - направляющий вектор прямой a .

Пусть - плавающая точка прямой a . Тогда вектор является направляющим вектором прямой a и имеет координаты (при необходимости смотрите статью ). Очевидно, что множество всех точек на плоскости определяют прямую, проходящую через точку и имеющую направляющий вектор тогда и только тогда, когда векторы и коллинеарны.

Пример.

Напишите каноническое уравнение прямой, которая в прямоугольной системе координат Oxy на плоскости проходит через две точки и .

Решение.

По известным координатам точек начала и конца мы можем найти координаты вектора : . Этот вектор является направляющим вектором прямой, уравнение которой мы ищем. Каноническое уравнение прямой, проходящей через точку и имеющей направляющий вектор.

Решение.

Нормальный вектор прямой имеет координаты , причем этот вектор является направляющим вектором прямой, уравнение которой мы ищем в силу перпендикулярности прямых. Таким образом, искомое каноническое уравнение прямой на плоскости запишется как .

Ответ:

Список литературы.

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Канонические уравнения прямой

Постановка задачи. Найти канонические уравнения прямой, заданной как линия пересечения двух плоскостей (общими уравнениями)

План решения. Канонические уравнения прямой с направляющим вектором , проходящей через данную точку , имеют вид

. (1)

Поэтому, чтобы написать канонические уравнения прямой, необходимо найти ее направляющий вектор и какую-нибудь точку на прямой.

1. Так как прямая принадлежит одновременно обеим плоскостям, то ее направляющий вектор ортогонален нормальным векторам обеих плоскостей, т.е. согласно определению векторного произведения, имеем

. (2)

2. Выбираем какую-нибудь точку на прямой. Поскольку направляющий вектор прямой не параллелен хотя бы одной из координатных плоскостей, то прямая пересекает эту координатную плоскость. Следовательно, в качестве точки на прямой может быть взята точка ее пересечения с этой координатной плоскостью.

3. Подставляем найденные координаты направляющего вектора и точки в канонические уравнения прямой (1).

Замечание. Если векторное произведение (2) равно нулю, то плоскости не пересекаются (параллельны) и записать канонические уравнения прямой не представляется возможным.

Задача 12. Написать канонические уравнения прямой.

Канонические уравнения прямой:

,

где – координаты какой-либо точки прямой, – ее направляющий вектор.

Найдем какую-либо точку прямой . Пусть , тогда

Следовательно, – координаты точки, принадлежащей прямой.