В этой статье подробно рассмотрим на плоскости и в трехмерном пространстве. Начнем с определения перпендикулярных прямых, покажем обозначения и приведем примеры. После этого приведем необходимое и достаточное условие перпендикулярности двух прямых и детально разберем решения характерных задач.

Навигация по странице.

Перпендикулярные прямые – основные сведения.

Пример.

В прямоугольной системе координат Oxy заданы три точки . Перпендикулярны ли прямые АВ и АС ?

Решение.

Векторы и являются направляющими векторами прямых АВ и АС . Обратившись к статье , вычисляем . Векторы и перпендикулярны, так как . Таким образом, выполняется необходимое и достаточное условие перпендикулярности прямых АВ и АС . Следовательно, прямые АВ и АС перпендикулярны.

Ответ:

Да, прямые перпендикулярны.

Пример.

Являются ли прямые и перпендикулярными?

Решение.

Направляющий вектор прямой , а - направляющий вектор прямой . Вычислим скалярное произведение векторов и : . Оно отлично от нуля, следовательно, направляющие векторы прямых не перпендикулярны. То есть, не выполняется условие перпендикулярности прямых, поэтому, исходные прямые не перпендикулярны.

Ответ:

Нет, прямые не перпендикулярны.

Аналогично, необходимое и достаточное условие перпендикулярности прямых a и b в прямоугольной системе координат Oxyz в трехмерном пространстве имеет вид , где и - направляющие векторы прямых a и b соответственно.

Пример.

Перпендикулярны ли прямые, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и ?

Решение.

Числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора прямой. А координатами направляющего вектора прямой, которая задана параметрическими уравнениями прямой в пространстве , являются коэффициенты при параметре. Таким образом, и - направляющие векторы заданных прямых. Выясним, перпендикулярны ли они: . Так как скалярное произведение равно нулю, то эти векторы перпендикулярны. Значит, выполняется условие перпендикулярности заданных прямых.

Ответ:

Прямые перпендикулярны.

Для проверки перпендикулярности двух прямых на плоскости существуют другие необходимые и достаточные условия перпендикулярности.

Теорема.

Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы нормальный вектор прямой a был перпендикулярен нормальному вектору прямой b .

Озвученное условие перпендикулярности прямых удобно использовать, если по заданным уравнениям прямых легко находятся координаты нормальных векторов прямых. Этому утверждению отвечает общее уравнение прямой вида , уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом .

Пример.

Убедитесь, что прямые и перпендикулярны.

Решение.

По заданным уравнениям прямых легко найти координаты нормальных векторов этих прямых. – нормальный вектор прямой . Перепишем уравнение в виде , откуда видны координаты нормального вектора этой прямой: .

Векторы и перпендикулярны, так как их скалярное произведение равно нулю: . Таким образом, выполняется необходимое и достаточное условие перпендикулярности заданных прямых, то есть, они действительно перпендикулярны.

В частности, если прямую a на плоскости определяет уравнение прямой с угловым коэффициентом вида , а прямую b – вида , то нормальные векторы этих прямых имеют координаты и соответственно, а условие перпендикулярности этих прямых сводится к следующему соотношению между угловыми коэффициентами .

Перпендикулярные прямые фигурируют чуть ли не в каждой геометрической задаче. Иногда перпендикулярность прямых известна из условия, а в других случаях перпендикулярность прямых приходится доказывать. Для доказательства перпендикулярности двух прямых достаточно показать, используя любые геометрические методы, что угол между прямыми равен девяноста градусам.

А как ответить на вопрос «перпендикулярны ли прямые», если известны уравнения, задающие эти прямые на плоскости или в трехмерном пространстве?

Для этого следует воспользоваться необходимым и достаточным условием перпендикулярности двух прямых . Сформулируем его в виде теоремы.

Теорема.

a и b необходимо и достаточно, чтобы направляющий вектор прямой a был перпендикулярен направляющему вектору прямой b .

Доказательство этого условия перпендикулярности прямых основано на определении направляющего вектора прямой и на определении перпендикулярных прямых.

Добавим конкретики.

Пусть на плоскости введена прямоугольная декартова система координат Oxy и заданыуравнения прямой на плоскости некоторого вида, определяющие прямые a и b . Обозначим направляющие векторы прямых а и b как и соответственно. По уравнениям прямых a и b можно определить координаты направляющих векторов этих прямых – получаем и . Тогда, для перпендикулярности прямых a и b необходимо и достаточно, чтобы выполнялось условие перпендикулярности векторов и , то есть, чтобы скалярное произведение векторов и равнялось нулю: .

Итак, a и b в прямоугольной системе координат Oxy на плоскости имеет вид , где и - направляющие векторы прямых a и b соответственно.

Это условие удобно использовать, когда легко находятся координаты направляющих векторов прямых, а также когда прямым a и b соответствуют канонические уравнения прямой на плоскости или параметрические уравнения прямой на плоскости.

Пример.

В прямоугольной системе координат Oxy заданы три точки . Перпендикулярны ли прямые АВ и АС ?

Решение.

Векторы и являются направляющими векторами прямых АВ и АС . Обратившись к статье координаты вектора по координатам точек его начала и конца, вычисляем . Векторы и перпендикулярны, так как . Таким образом, выполняется необходимое и достаточное условие перпендикулярности прямых АВ и АС . Следовательно, прямые АВ и АС перпендикулярны.



Ответ:

да, прямые перпендикулярны.

Пример.

Являются ли прямые и перпендикулярными?

Решение.

Направляющий вектор прямой , а - направляющий вектор прямой . Вычислим скалярное произведение векторов и : . Оно отлично от нуля, следовательно, направляющие векторы прямых не перпендикулярны. То есть, не выполняется условие перпендикулярности прямых, поэтому, исходные прямые не перпендикулярны.

Ответ:

нет, прямые не перпендикулярны.

Аналогично, необходимое и достаточное условие перпендикулярности прямых a и b в прямоугольной системе координат Oxyz в трехмерном пространстве имеет вид , где и - направляющие векторы прямых a и b соответственно.

Пример.

Перпендикулярны ли прямые, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и ?

Решение.

Числа, стоящие в знаменателях канонических уравнений прямой в пространстве, являются соответствующими координатами направляющего вектора прямой. А координатами направляющего вектора прямой, которая задана параметрическими уравнениями прямой в пространстве, являются коэффициенты при параметре. Таким образом, и - направляющие векторы заданных прямых. Выясним, перпендикулярны ли они: . Так как скалярное произведение равно нулю, то эти векторы перпендикулярны. Значит, выполняется условие перпендикулярности заданных прямых.

Ответ:

прямые перпендикулярны.

Для проверки перпендикулярности двух прямых на плоскости существуют другие необходимые и достаточные условия перпендикулярности.

Теорема.

Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы нормальный вектор прямой a был перпендикулярен нормальному вектору прямой b .

Озвученное условие перпендикулярности прямых удобно использовать, если по заданным уравнениям прямых легко находятся координаты нормальных векторов прямых. Этому утверждению отвечает общее уравнение прямой вида , уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом .



Пример.

Убедитесь, что прямые и перпендикулярны.

Решение.

По заданным уравнениям прямых легко найти координаты нормальных векторов этих прямых. – нормальный вектор прямой . Перепишем уравнение в виде , откуда видны координаты нормального вектора этой прямой: .

Векторы и перпендикулярны, так как их скалярное произведение равно нулю: . Таким образом, выполняется необходимое и достаточное условие перпендикулярности заданных прямых, то есть, они действительно перпендикулярны.

В частности, если прямую a на плоскости определяет уравнение прямой с угловым коэффициентом вида , а прямую b – вида , то нормальные векторы этих прямых имеют координаты и соответственно, а условие перпендикулярности этих прямых сводится к следующему соотношению между угловыми коэффициентами .

Пример.

Перпендикулярны ли прямые и ?

Решение.

Угловой коэффициент прямой равен , а угловой коэффициент прямой равен . Произведение угловых коэффициентов равно минус единице , следовательно, прямые перпендикулярны.

Ответ:

заданные прямые перпендикулярны.

Можно озвучить еще одно условие перпендикулярности прямых на плоскости.

Теорема.

Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы направляющий вектор одной прямой и нормальный вектор второй прямой были коллинеарны.

Этим условием, очевидно, удобно пользоваться, когда легко находятся координаты направляющего вектора одной прямой и координаты нормального вектора второй прямой, то есть, когда одна прямая задана каноническим уравнением или параметрическими уравнениями прямой на плоскости, а вторая – или общим уравнением прямой, или уравнением прямой в отрезках, или уравнением прямой с угловым коэффициентом.

Пример.

Являются ли прямые и перпендикулярными?

Решение.

Очевидно, - нормальный вектор прямой , а - направляющий вектор прямой . Векторы и не коллинеарны, так как для них не выполняется условие коллинеарности двух векторов(не существует такого действительного числа t , при котором ). Следовательно, заданные прямые не перпендикулярны.

Ответ:

прямые не перпендикулярны.

21. Расстояние от точки до прямой.

Расстояние от точки до прямой определяется через расстояние от точки до точки. Покажем как это делается.

Пусть на плоскости или в трехмерном пространстве задана прямая a и точка M 1 , не лежащая на прямой a . Проведем через точку M 1 прямую b , перпендикулярную прямой a . Обозначим точку пересечения прямых a и b как H 1 . Отрезок M 1 H 1 называется перпендикуляром , проведенным из точки M 1 к прямой a .

Определение.

Расстоянием от точки M 1 до прямой a называют расстояние между точками M 1 и H 1 .

Однако чаще встречается определение расстояния от точки до прямой, в котором фигурирует длина перпендикуляра.

Определение.

Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой.

Это определение эквивалентно первому определению расстояния от точки до прямой.

Обратите внимание на то, что расстояние от точки до прямой – это наименьшее из расстояний от этой точки до точек заданной прямой. Покажем это.

Возьмем на прямой a точку Q , не совпадающую с точкой M 1 . Отрезок M 1 Q называютнаклонной , проведенной из точки M 1 к прямой a . Нам нужно показать, что перпендикуляр, проведенный из точки M 1 к прямой a , меньше любой наклонной, проведенной из точки M 1 к прямой a . Это действительно так: треугольник M 1 QH 1 прямоугольный с гипотенузой M 1 Q , а длина гипотенузы всегда больше длины любого из катетов, следовательно, .

22. Плоскость в пространстве R3. Уравнение плоскости.

Плоскость в декартовой прямоугольной системе координат может быть задана уравнением, которое называется общим уравнением плоскости.

Определение. Вектор перпендикулярен плоскости и называется ее нормальным вектором.

Если в прямоугольной системе координат известны координаты трех точек , не лежащих на одной прямой, то уравнение плоскости записывается в виде: .

Вычислив данный определитель, получим общее уравнение плоскости.

Пример. Написать уравнение плоскости, проходящей через точки .

Решение:

Уравнение плоскости: .

23. Исследование общего уравнения плоскости.

О п р е д е л е н и е 2. Всякий вектор, перпендикулярный плоскости, называется нормальным вектором этой плоскости.

Если известна фиксированная точка M 0 (x 0 , y 0 , z 0), лежащая в данной плоскости, и вектор , перпендикулярный данной плоскости, то уравнение плоскости, проходящей через точкуM 0 (x 0 , y 0 , z 0), перпендикулярно вектору , имеет вид

A (x-x 0)+ B (y-y 0) + C (z-z 0)= 0. (3.22)

Покажем, что уравнение (3.22) является общим уравнением плоскости (3.21). Для этого раскроем скобки и соберем в скобки свободный член:

.Ax + By+ Cz + (-Ax 0 - By -Cz 0)= 0

ОбозначивD = -Ax 0 - By -Cz 0 , получим уравнение Ax + By + Cz + D = 0.

Задача 1. Составить уравнение плоскости, проходящей через точку А, перпендикулярно вектору , если A (4, -3, 1), B (1, 2, 3).

Решение. Найдем нормальный вектор плоскости :

Для нахождения уравнения плоскости используем уравнение (3.22):

Ответ: -3x + 5y + 2z + 25 = 0.

Задача 2. Составить уравнение плоскости, проходящей через точку M 0 (-1, 2, -1), перпендикулярно оси OZ .

Решение. В качестве нормального вектора искомой плоскости можно взять любой вектор, лежащий на оси OZ, например, , тогда уравнение плоскости

Ответ: z + 1 = 0.

24. Расстояние от точки до плоскости.

Расстояние от точки до плоскости определяется через расстояние от точки до точки, одна из которых заданная точка, а другая – проекция заданной точки на заданную плоскость.

Пусть в трехмерном пространстве задана точка М 1 и плоскость . Проведем через точку М 1 прямую a , перпендикулярную к плоскости . Обозначим точку пересечения прямой a и плоскости как H 1 . Отрезок M 1 H 1 называют перпендикуляром , опущенным из точки М 1 на плоскость , а точку H 1 основанием перпендикуляра .

Определение.

– это расстояние от данной точки до основания перпендикуляра, проведенного из заданной точки к заданной плоскости.

Чаще встречается определение расстояние от точки до плоскости в следующем виде.

Определение.

Расстояние от точки до плоскости – это длина перпендикуляра, опущенного из заданной точки к заданной плоскости.

Следует отметить, что расстояние от точки М 1 до плоскости , определенное таким образом, является наименьшим из расстояний от заданной точки М 1 до любой точки плоскости . Действительно, пусть точка H 2 лежит в плоскости и отлична от точки H 1 . Очевидно, треугольник М 2 H 1 H 2 является прямоугольным, в нем М 1 H 1 – катет, а M 1 H 2 – гипотенуза, следовательно, . Кстати, отрезок M 1 H 2 называется наклонной , проведенной из точки М 1 к плоскости . Итак, перпендикуляр, опущенный из заданной точки на заданную плоскость, всегда меньше наклонной, проведенной из этой же точки к заданной плоскости.

Если прямая проходит через две заданные точки , то ее уравнение записывают в виде: .

Определение. Вектор называется направляющим вектором прямой, если он параллелен или принадлежит ей.

Пример. Написать уравнение прямой, проходящей через две заданные точки .

Решение: Используем общую формулу прямой, проходящей через две заданные точки: - каноническое уравнение прямой, проходящей через точки и . Вектор - направляющий вектор прямой.

26. Взаимное расположение прямых в пространстве R3.

Перейдем к вариантам взаимного расположения двух прямых в пространстве.

Во-первых, две прямые могут совпадать, то есть, иметь бесконечно много общих точек (по крайней мере две общие точки).

Во-вторых, две прямые в пространстве могут пересекаться, то есть, иметь одну общую точку. В этом случае эти две прямые лежат в некоторой плоскости трехмерного пространства. Если две прямые в пространстве пересекаются, то мы приходим к понятию угла между пересекающимися прямыми.

В-третьих, две прямые в пространстве могут быть параллельными. В этом случае они лежат в одной плоскости и не имеют общих точек. Рекомендуем к изучению статью параллельные прямые, параллельность прямых.

После того как мы дали определение параллельных прямых в пространстве, следует сказать онаправляющих векторах прямой линии в силу их важности. Любой ненулевой вектор, лежащий на этой прямой или на прямой, которая параллельна данной, будем называть направляющим вектором прямой. Направляющий вектор прямой очень часто используется при решении задач, связанных с прямой линией в пространстве.

Наконец, две прямые в трехмерном пространстве могут быть скрещивающимися. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. Такое взаимное расположение двух прямых в пространстве приводит нас к понятию угла между скрещивающимися прямыми.

Особое практическое значение имеет случай, когда угол между пересекающимися или скрещивающимися прямыми в трехмерном пространстве равен девяноста градусам. Такие прямые называют перпендикулярными (смотрите статью перпендикулярные прямые, перпендикулярность прямых).

27. Взаимное расположение прямой и плоскости в пространстве R3.

Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке, см. следующие рисунки.

Если , то это означает, что . А такое возможно лишь тогда, когда прямая лежит на плоскости или параллельна ей. Если прямая лежит на плоскости, то любая точка прямой является точкой плоскости икоординаты любой точки прямой удовлетворяют уравнению плоскости. Поэтому достаточно проверить, лежит ли на плоскости точка . Если , то точка – лежит на плоскости, а это означает, что и сама прямая лежит на плоскости.

Если , а , то точка на прямой не лежит на плоскости, а это означает, что прямая параллельна плоскости.

Теорема доказана.

В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве. Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.

Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.

То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными. Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.

Определение 1

Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.

Перпендикулярность обозначается « ⊥ », а запись принимает вид a ⊥ b , что значит, прямая a перпендикулярна прямой b .

Например, перпендикулярными прямыми на плоскости могут быть стороны квадрата с общей вершиной. В трехмерном пространстве прямые O x , O z , O y перпендикулярны попарно: O x и O z , O x и O y , O y и O z .

Перпендикулярность прямых – условия перпендикулярности

Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.

Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.

Теорема 1

Для того, чтобы прямые a и b были перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b .

Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.

Доказательство 1

Пусть введена прямоугольная декартова система координат О х у с заданными уравнениями прямой на плоскости, которые определяют прямые a и b . Направляющие векторы прямых a и b обозначим a → и b → . Из уравнения прямых a и b необходимым и достаточным условием является перпендикулярность векторов a → и b → . Это возможно только при скалярном произведении векторов a → = (a x , a y) и b → = (b x , b y) равном нулю, а запись имеет вид a → , b → = a x · b x + a y · b y = 0 . Получим, что необходимым и достаточным условием перпендикулярности прямых a и b , находящихся в прямоугольной системе координат О х у на плоскости, является a → , b → = a x · b x + a y · b y = 0 , где a → = (a x , a y) и b → = b x , b y - это направляющие векторы прямых a и b .

Условие применимо, когда необходимо найти координаты направляющих векторов или при наличии канонических или параметрических уравнений прямых на плоскости заданных прямых a и b .

Пример 1

Заданы три точки A (8 , 6) , B (6 , 3) , C (2 , 10) в прямоугольной системе координат О х у. Определить, прямые А В и А С перпендикулярны или нет.

Решение

Прямые А В и А С имеют направляющие векторы A B → и A C → соответственно. Для начала вычислим A B → = (- 2 , - 3) , A C → = (- 6 , 4) . Получим, что векторы A B → и A C → перпендикулярны из свойства о скалярном произведении векторов, равном нулю.

A B → , A C → = (- 2) · (- 6) + (- 3) · 4 = 0

Очевидно, что необходимое и достаточное условие выполнимо, значит, А В и А С перпендикулярны.

Ответ: прямые перпендикулярны.

Пример 2

Определить, заданные прямые x - 1 2 = y - 7 3 и x = 1 + λ y = 2 - 2 · λ перпендикулярны или нет.

Решение

a → = (2 , 3) является направляющим вектором заданной прямой x - 1 2 = y - 7 3 ,

b → = (1 , - 2) является направляющим вектором прямой x = 1 + λ y = 2 - 2 · λ .

Перейдем к вычислению скалярного произведения векторов a → и b → . Выражение будет записано:

a → , b → = 2 · 1 + 3 · - 2 = 2 - 6 ≠ 0

Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.

Ответ: прямые не перпендикулярны.

Необходимое и достаточное условие перпендикулярности прямых a и b применяется для трехмерного пространства, записывается в виде a → , b → = a x · b x + a y · b y + a z · b z = 0 , где a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b .

Пример 3

Проверить перпендикулярность прямых в прямоугольной системе координат трехмерного пространства, заданные уравнениями x 2 = y - 1 = z + 1 0 и x = λ y = 1 + 2 · λ z = 4 · λ

Решение

Знаменатели из канонических уравнений прямых считаются координатами направляющего вектора прямой. Координаты направляющего вектора из параметрического уравнения – коэффициенты. Отсюда следует, что a → = (2 , - 1 , 0) и b → = (1 , 2 , 4) являются направляющими векторами заданных прямых. Для выявления их перпендикулярности найдем скалярное произведение векторов.

Выражение примет вид a → , b → = 2 · 1 + (- 1) · 2 + 0 · 4 = 0 .

Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.

Ответ: прямые перпендикулярны.

Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.

Теорема 2

Прямые a и b на плоскости считаются перпендикулярными при перпендикулярности нормального вектора прямой a с вектором b , это и есть необходимое и достаточное условие.

Доказательство 2

Данное условие применимо, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. То есть при наличии общего уравнения прямой вида A x + B y + C = 0 , уравнения прямой в отрезках вида x a + y b = 1 , уравнения прямой с угловым коэффициентом вида y = k x + b координаты векторов возможно найти.

Пример 4

Выяснить, перпендикулярны ли прямые 3 x - y + 2 = 0 и x 3 2 + y 1 2 = 1 .

Решение

Исходя их уравнений, необходимо найти координаты нормальных векторов прямых. Получим, что n α → = (3 , - 1) - это нормальный вектор для прямой 3 x - y + 2 = 0 .

Упростим уравнение x 3 2 + y 1 2 = 1 до вида 2 3 x + 2 y - 1 = 0 . Теперь четко видны координаты нормального вектора, которые запишем в такой форме n b → = 2 3 , 2 .

Векторы n a → = (3 , - 1) и n b → = 2 3 , 2 будут перпендикулярными, так как их скалярное произведение даст в итоге значение равное 0 . Получим n a → , n b → = 3 · 2 3 + (- 1) · 2 = 0 .

Необходимое и достаточное условие было выполнено.

Ответ: прямые перпендикулярны.

Когда прямая a на плоскости определена при помощи уравнения с угловым коэффициентом y = k 1 x + b 1 , а прямая b - y = k 2 x + b 2 , отсюда следует, что нормальные векторы будут иметь координаты (k 1 , - 1) и (k 2 , - 1) . Само условие перпендикулярности сводится к k 1 · k 2 + (- 1) · (- 1) = 0 ⇔ k 1 · k 2 = - 1 .

Пример 5

Выяснить, перпендикулярны ли прямые y = - 3 7 x и y = 7 3 x - 1 2 .

Решение

Прямая y = - 3 7 x имеет угловой коэффициент, равный - 3 7 , а прямая y = 7 3 x - 1 2 - 7 3 .

Произведение угловых коэффициентов дает значение - 1 , - 3 7 · 7 3 = - 1 , то есть прямые являются перпендикулярными.

Ответ: заданные прямые перпендикулярны.

Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.

Теорема 3

Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность направляющего вектора одной из прямых с нормальным вектором второй прямой.

Доказательство 3

Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.

Пример 6

Определить, являются ли заданные прямые x - y - 1 = 0 и x 0 = y - 4 2 перпендикулярными.

Решение

Получаем, что нормальный вектор прямой x - y - 1 = 0 имеет координаты n a → = (1 , - 1) , а b → = (0 , 2) - направляющий вектор прямой x 0 = y - 4 2 .

Отсюда видно, что векторы n a → = (1 , - 1) и b → = (0 , 2) не коллинеарны, потому что условие коллинеарности не выполняется. Не существует такого числа t , чтобы выполнялось равенство n a → = t · b → . Отсюда вывод, что прямые не являются перпендикулярными.

Ответ: прямые не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На этом уроке мы подробно рассмотрим понятие перпендикуляра к прямой и докажем важную теорему.

Вначале вспомним определение перпендикулярных прямых. Далее сформулируем и докажем теорему о двух прямых, перпендикулярных к третьей. Далее дадим определение перпендикуляра к прямой, сформулируем и докажем важную теорему о том, что из любой произвольной точки можно провести единственный перпендикуляр к заданной прямой.

В конце решим несколько задач на пройденную тему.

Для начала вспомним важный факт: две пересекающиеся прямые называются перпендикулярными, если они образуют четыре прямых угла.

Рис. 1. Перпендикулярные прямые

АС⊥ВD, поскольку четыре угла по 90°. Напомним также, что при пересечении любых прямых образуются четыре угла: 2 вертикальных, которые равны между собой, еще пара равных вертикальных углов. a и b - смежные углы. И по теореме о смежных углах a + b = 180°.

Рис. 2. Пересечение прямых

В единственном случае a = b = 90°. В этом случае прямые АС и ВD называются перпендикулярными.

Теорема 1: Две прямые, перпендикулярные к третьей, не пересекаются.

Рис. 3. Чертеж к теореме 1

Отсюда следует, что AA 1 и BB 1 не имеют общих точек. Прямые AA 1 и BB 1 можно продлить бесконечно, но при этом они не пересекутся. В этом заключается смысл теоремы.

Определение: Пусть прямые АН и a перпендикулярны. Мы знаем, что чтобы все четыре угла при этих прямых были по 90°, необходимо, чтобы один из них был прямым. Отрезок АН называют перпендикуляром, проведенным из точки А к прямой a, если прямые АН и a перпендикулярны . При этом точка Н называется основанием перпендикуляра.

Рис. 4. Чертеж к определению перпендикуляра

В данном случае перпендикуляр - это отрезок. Значит, перпендикуляр к прямой - это отрезок.

Теорема 2: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Рис. 5. Чертеж к теореме 2

Существует множество точек, которые не лежат на прямой a. Из любой точки А, не лежащей на данной прямой, можно провести перпендикуляр к прямой. К тому же этот перпендикуляр единственный.

Дано: точка А не принадлежит прямой a.

Доказать: существует единственный отрезок АН, где АН.

Доказательство:

1. Проведем 2 равных угла. ∠АВС =∠МВС или ∠1 = ∠2.

2. Равные углы можно совместить наложением. При этом точка А перейдет в точку A 1 . ВА = ВA 1 (перегибание по прямой ВС).

3. Соединим точки А и A 1 . Получим точку Н. Углы ∠ВНА = ∠3, ∠ВНA 1 = ∠4.

4.

Следовательно, треугольники ВНА = ВНA 1 по первому признаку равенства треугольников, то есть по углу и двум прилежащим сторонам. Из равенства треугольников следует равенство всех элементов. А значит, ∠3 = ∠4. Эти углы лежат против равных сторон. Два смежных равны только в случае, если каждый из них равен по 90°. А значит, АН^ВС. Мы доказали, что из точки А можно провести перпендикуляр к прямой a.

Рис. 6. Чертеж к доказательству теоремы 2(1)

Единственность перпендикуляра, проведенного из точки А к прямой, докажем методом «от противного».

5. Предположим, что из точки А можно провести к прямой a два разных перпендикуляра.

АН ⊥ a, АH 1 ⊥ a.

Рис. 7. Чертеж к доказательству единственности перпендикуляра

Это невозможно, поскольку из разных точек прямой a проведены 2 перпендикуляра, которые имеют общую точку А. Мы получили противоречие, значит, наше предположение неверно. Из точки А можно провести лишь один перпендикуляр к прямой a.

Пример 1: Точки А и С лежат по одну сторону от прямой a. Перпендикуляры АВ и СD к прямой a равны.

1. Докажите, что АВD = ∠CDВ.

2. Найдите ∠АВС, если ∠АDВ = 44°.

Дано: А) АВ⊥ a, CD ⊥ a.

Доказать: ∠ADB = ∠CDB.

Доказательство:

Рис. 8. Чертеж к примеру 1(а)

Доказательство основано на понятии перпендикуляра из точки к прямой. Отсюда следует, что ADB = CDB, что и требовалось доказать.

Дано: Б) АВ⊥ a, CD⊥ a. AB = CD, ∠ADB = 44°. Найти ∠АВС.

Доказательство:

Выполним пояснительный рисунок:

Рис. 9. Чертеж к примеру 1(б)

1. ∆ABD = ∆CDB. (AB = CD, BD - общая, ∠ABD = ∠CDB). Из равенства треугольников следует равенство их соответствующих элементов. AD = CB.

2. ∠ADB = ∠CBD = 44°. Поскольку эти углы лежат против равных сторон AB и CD соответственно.

3. ∠АВС = 90° - 44° = 46°

Ответ: 46°.

На сегодняшнем уроке мы рассмотрели понятие перпендикуляра к прямой и доказали теорему об этом перпендикуляре. На следующем уроке мы познакомимся с медианой, биссектрисой, высотой треугольника.

1. Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. - М.: Просвещение.

2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5 изд. - М.: Просвещение.

3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.

  1. Обобщающий урок по геометрии в 7-м классе ().
  2. Прямая линия, отрезок ().

1. №13(б). Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.

2. Один из смежных углов в 3 раза больше другого. Найдите эти углы.

3. Прямые BH и AH взаимно перпендикулярны и ∠BHM = ∠AHC. Докажите, что НМ⊥НС.

4. № 14(г). Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.

Прямая (отрезок прямой) обозначается двумя большими буквами латинского алфавита или одной маленькой буквой. Точка обозначается только большой латинской буквой.

Прямые могут не пересекаться, пересекаться или совпадать. Пересекающиеся прямые имеют только одну общую точку, непересекающиеся прямые - ни одной общей точки, у совпадающих прямых все точки общие.

Определение. Две прямые, пересекающиеся под прямым углом, называются перпендикулярными. Перпендикулярность прямых (или их отрезков) обозначают знаком перпендикулярности «⊥».

Например:

Ваш AB и CD (рис. 1) пересекаются в точке О и ∠АОС = ∠ВОС = ∠АОD = ∠BOD = 90°, то AB CD .

Если AB CD (рис. 2) и пересекаются в точке В , то ∠АBC = ∠ABD = 90°

Свойства перпендикулярных прямых

1. Через точку А (рис. 3) можно провести только одну перпендикулярную прямую АВ к прямой СD; остальные прямые, проходящие через точку А и пересекающие СD , называются наклонными прямыми (рис. 3, прямые АЕ и АF ).

2. Из точки A можно опустить перпендикуляр на прямую CD ; длина перпендикуляра (длина отрезка АВ ), проведенного из точки А на прямую CD ,- это самое короткое расстояние от A до CD (рис. 3).