Температура – один из основных факторов, определяющих возможность и интенсивность размножения микроорганизмов.

Микроорганизмы могут расти и проявлять свою жизнедеятельность в определенном температурном диапазоне и в зависимости от отношения к температуре делятся на психрофилы, мезофилы и термофилы. Температурные диапазоны роста и развития микроорганизмов этих групп приведены в таблице 9.1.

Таблица 9.1 Деление микроорганизмов на группы в зависимости

от отношения к температуре

микроорганизмов

Т(°С) максим.

Отдельные

представители

1. Психрофилы (холодолюбивые)

Бактерии, обитающие в холодильниках, морские бактерии

2. Мезофилы

Большинство грибов, дрожжей, бактерий

3. Термофилы

(теплолюбвые)

Бактерии, обитающие в горячих источниках. Большинство образуют устойчивые споры

Разделение микроорганизмов на 3 группы весьма условно, так как микроорганизмы могут приспосабливаться к несвойственной им температуре.

Температурные пределы роста определяются терморезистентностью ферментов и клеточных структур, содержащих белки.

Среди мезофилов встречаются формы с высоким температурным максимумом и низким минимумом. Такие микроорганизмы называют термотолерантными.

Действие высоких температур на микроорганизмы. Повышение температуры выше максимальной может привести к гибели клеток. Гибель микроорганизмов наступает не мгновенно, а во времени. При незначительном повышении температуры выше максимальной микроорганизмы могут испытывать «тепловой шок» и после недлительного пребывания в таком состоянии они могут реактивироваться.

Механизм губительного действия высоких температур связан с денатурацией клеточных белков. На температуру денатурации белков влияет содержание в них воды (чем меньше воды в белке, тем выше температура денатурации). Молодые вегетативные клетки, богатые свободной водой, погибают при нагревании быстрее, чем старые, обезвоженные.

Термоустойчивость – способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития.

Гибель микроорганизмов наступает при разных значениях температур и зависит от вида микроорганизма. Так, при нагревании во влажной среде в течение 15 мин при температуре 50–60 °С погибает большинство грибов и дрожжей; при 60–70 °С – вегетативные клетки большинства бактерий, споры грибов и дрожжей уничтожаются при 65–80° С. Наибольшей термоустойчивостью обладают вегетативные клетки термофилов (90–100 °С) и споры бактерий (120 °С).

Высокая термоустойчивость термофилов связана с тем, что, во первых, белки и ферменты их клеток более устойчивы к температуре, во вторых, в них содержится меньше влаги. Кроме того, скорость синтеза различных клеточных структур у термофилов выше скорости их разрушения.

Термоустойчивость спор бактерий связана с малым содержанием в них свободной влаги, многослойнойоболочкой, в состав которой входит кальциевая сольдипиколиновой кислоты.

На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также стерилизация и пастеризация. Пастеризация – процесс нагревания до 100˚С при котором происходит уничтожение вегетативных клеток микроорганизмов. Стерилизация – полное уничтожение вегетативных клеток и спор микроорганизмов. Процесс стерилизации ведут при температуре выше 100 °С.

Влияние низких температур на микроорганизмы. К низким температурам микроорганизмы более устойчивы, чем к высоким. Несмотря на то, что размножение и биохимическая активность микроорганизмов при температуре ниже минимальной прекращаются, гибели клеток не происходит, т.к. микроорганизмы переходят в состояние анабиоза (скрытой жизни) и остаются жизнеспособными длительное время. При повышении температуры клетки начинают интенсивно размножаться.

Причинами гибели микроорганизмов при действии низких температур являются:

Нарушение обмена веществ;

Повышение осмотического давления среды вследствие вымораживания воды;

В клетках могут образоваться кристаллики льда, разрушающие клеточную стенку.

Низкая температура используется при хранении продуктов в охлажденном состоянии (при температуре от 10 до –2 °С) или в замороженном виде (от –12 до –30 °С).

Лучистая энергия. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Свет необходим для жизнедеятельности фототрофов. Хемотрофы могут расти и в темноте, а при длительном воздействии солнечной радиации эти микроорганизмы могут погибнуть.

Воздействие лучистой энергии подчиняется законам фотохимии: изменения в клетках могут быть вызваны только поглощенными лучами. Следовательно, для эффективности облучения имеет значение проникающая способность лучей, которая зависит от длины волны и дозы.

Доза облучения, в свою очередь, определяется интенсивностью и временем воздействия. Кроме того, эффект воздействия лучистой энергии зависит от вида микроорганизма, характера облучаемого субстрата, степени обсемененности его микроорганизмами, а также от температуры.

Низкие интенсивности видимого света (350–750 нм) и ультрафиолетовых лучей (150–300 нм), а также низкие дозы ионизирующих излучений либо не влияют на жизнедеятельность микроорганизмов, либо приводят к ускорению их роста и стимуляции метаболических процессов, что связано с поглощением квантов света определенными компонентами или веществами клеток и переходом их в электронно-возбужденное состояние.

Более высокие дозы излучений вызывают торможение отдельных процессов обмена, а действие ультрафиолетовых и рентгеновских лучей может привести к изменению наследственных свойств микроорганизмов - мутациям, что широко используется для получения высокопродуктивных штаммов.

Гибель микроорганизмов под действием ультрафиолетовых лучей связана:

С инактивацией клеточных ферментов;

С разрушением нуклеиновых кислот;

С образованием в облучаемой среде перекиси водорода, озона и т.д.

Следует отметить, что наиболее устойчивыми к действию ультрафиолетовых лучей являются споры бактерий, затем споры грибов и дрожжей, далее окрашенные (пигментированные)клетки бактерий.Наименее устойчивы вегетативные клетки бактерий.

Гибель микроорганизмов под действием ионизирующих излучений вызвана:

Радиолизом воды в клетках и субстрате. При этом образуются свободные радикалы, атомарный водород, перекиси, которые, вступая во взаимодействие с другими веществами клетки, вызывают большое количество реакций, не свойственных нормально живущей клетке;

Инактивацией ферментов, разрушением мембранных структур, ядерного аппарата.

Радиоустойчивость различных микроорганизмов колеблется в широких пределах, причем микроорганизмы значительно радиоустойчивей высших организмов (в сотни и тысячи раз). Наиболее устойчивы к действию ионизирующих излучений споры бактерий, затем грибы и дрожжи и далее бактерии.

Губительное действие ультрафиолетовых и рентгеновских γ-лучей используется на практике.

Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений, используют бактерицидные свойства ультрафиолетовых лучей для дезинфекции воды.

Обработка пищевых продуктов низкими дозами гамма-излуче-ний называется радуризацией.

Электромагнитные колебания и ультразвук. Радиоволны - это электромагнитные волны, характеризующиеся относительно большой длиной (от миллиметров до километров) и частотами от 3·10 4 до 3·10 11 герц.

Прохождение коротких и ультрарадиоволн через среду вызывает возникновение в ней переменных токов высокой (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую.

Гибель микроорганизмов в электромагнитном поле высокой интенсивности наступает в результате теплового эффекта, но полностью механизм действия СВЧ-энергии на микроорганизмы не раскрыт.

В последние годы сверхвысокочастотная электромагнитная обработка пищевых продуктов все более широко применяется в пищевой промышленности (для варки, сушки, выпечки, разогревания, размораживания, пастеризации и стерилизации пищевых продуктов). По сравнению с традиционным способом тепловой обработки время нагревания СВЧ-энергией до одной и той же температуры сокращается во много раз, в связи с чем полнее сохраняются вкусовые и питательные свойства продукта.

Ультразвук. Ультразвуком называют механические колебания с частотами более 20 000 колебаний в секунду (20 кГц).

Природа губительного действия ультразвука на микроорганизмы связана:

С кавитационным эффектом. При распространении в жидкости УЗ-волн происходит быстро чередующееся разряжение и сжатие частиц жидкости. При разряжении в среде образуются мельчайшие полые пространства – «пузырьки», заполняющиеся парами окружающей среды и газами. При сжатии, в момент захлопывания кавитационных «пузырьков», возникает мощная гидравлическая ударная волна, вызывающая разрушительное действие;

с электрохимическим действием УЗ-энергии. В водной среде происходит ионизация молекул воды и активация растворенного в ней кислорода. При этом образуются вещества, обладающие большой реакционной способностью, которые обуславливают ряд химических процессов, неблагоприятно действующих на живые организмы.

Благодаря специфическим свойствам ультразвук все более широко применяют вразличныхобластях техники и технологии многихотраслей народного хозяйства. Ведутся исследования по применению УЗ-энергии для стерилизации питьевой воды, пищевых продуктов (молока, фруктовых соков, вин), мойки и стерилизации стеклянной тары.

ования. Интервал температур, при котором возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум - от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бактерий.

Мезофилы включают основную группу патогенных и условно-патогенных бактерий. Они растут в диапазоне температур 10- 47 °С; оптимум роста для большинства из них 37 °С.

При более высоких температурах (от 40 до 90 °С) развиваются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при температуре 250-300 °С и давлении 262 атм. Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как показатель загрязненности почвы.

Температурный фактор учитывают при проведении стерилизации. Вегетативные формы бактерий погибают при температуре 60 °С в течение 20-30 мин; споры - в автоклаве при 120 °С под давлением пара.

Хорошо выдерживают микроорганизмы действие низких температур. Поэтому их можно долго хранить в замороженном состоянии, в том числе при температуре жидкого газа (-173 °С).

Высушивание. Обезвоживание вызывает нарушение функций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты. Так, бактерии туберкулеза в мокроте выдерживают высушивание до 90 дней. Устойчивы к высушиванию некоторые капсуло- и слизеобразующие бактерии. Но особой устойчивостью обладают споры бактерий.

Высушивание под вакуумом из замороженного состояния - лиофилизацию - используют для продления жизнеспособности, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты длительно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

Действие излучения. Неионизирующее излучение - ультрафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение - гамма-излучение радиоактивных веществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предметов в больницах, родильных домах, микробиологических лабораториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200-450 нм.

Ионизирующее излучение применяют для стерилизации одноразовой пластиковой микробиологической посуды, питательных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию ионизирующих излучений, например Micrococcus radiodurans была выделена из ядерного реактора.

Действие химических веществ. Химические вещества могут оказывать различное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфицирующими. Процесс уничтожения микроорганизмов в окружающей среде называется дезинфекцией. Антимикробные химические вещества могут обладать бактерицидным, вирулицид-ным, фунгицидным действием и т.д.

Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсо-держащим соединениям и окислителям. В хлорсодержащих препаратах бактерицидным действием обладает хлор. К этим препаратам относят хлорную известь, хлорамины, пантоцид, неопан-тоцид, натрия гипохлорит, гипохлорит кальция, дезам, хлорде-зин, сульфохлорантин и др. Перспективными антимикробными препаратами на основе йода и брома считаются йодопирин и дибромантин. Интенсивными окислителями являются перекись водорода, калия перманганат и др. Они оказывают выраженное бактерицидное действие.

К фенолам и их производным относят фенол, лизол, лизо-ид, креозот, креолин, хлор-р-нафтол и гексахлорофен.

Выпускаются также бактерицидные мыла: феноловое, дегтярное, зеленое медицинское, «Гигиена». Мыло «Гигиена» содержит 3-5% гексахлорофена, обладает наилучшими бактерицидными свойствами и рекомендуется для мытья рук сотрудников инфекционных больниц, родильных домов, детских учреждений, предприятий общественного питания и микробиологических лабораторий.

Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли, бура); спирты (70-80° этанол и др.); альдегиды (формальдегид, р-пропиолактон).

Перспективной группой дезинфицирующих веществ являются поверхностно-активные вещества, относящиеся к четвертичным соединениям и амфолитам, обладающие бактерицидными, моющими свойствами и низкой токсичностью (ниртан, амфо-лан и др.).

Для дезинфекции точных приборов (например, на космических кораблях), а также оборудования и аппаратуры используют газовую смесь из оксида этилена с метилбромидом. Дезинфекцию проводят в герметических условиях.

Влияние биологических факторов. Микроорганизмы находятся друг с другом в различных взаимоотношениях. Совместное существование двух различных организмов называется симбиозом (от греч. simbiosis - совместная жизнь). Различают несколько вариантов полезных взаимоотношений: метабиоз, мутуализм, комменсализм, сателлизм.

Метабиоз - взаимоотношение между микроорганизмами, при котором один микроорганизм использует для своей жизнедеятельности продукты жизнедеятельности другого организма. Метабиоз характерен для почвенных нитрифицирующих бактерий, использующих для метаболизма аммиак - продукт жизнедеятельности аммонифицирующих почвенных бактерий.

Мутуализм - взаимовыгодные взаимоотношения между разными организмами. Примером мутуалистического симбиоза являются лишайники - симбиоз гриба и сине-зеленой водоросли. Получая от клеток водоросли органические вещества, гриб в свою очередь поставляет им минеральные соли и защищает от высыхания.

Комменсализм (от лат. commensalis - сотрапезник) - сожительство особей разных видов, при котором выгоду из симбиоза извлекает один вид, не причиняя другому вреда. Комменсалами являются бактерии, представители нормальной микрофлоры человека.

Сателлизм - усиление роста одного вида микроорганизма под влиянием другого микроорганизма. Например, колонии дрожжей или сарцин, выделяя в питательную среду метаболиты, стимулируют рост вокруг них колоний микроорганизмов. При совместном росте нескольких видов микроорганизмов могут активизироваться их физиологические функции и свойства, что приводит к более быстрому воздействию на субстрат.

Антагонистические взаимоотношения, или антагонистический симбиоз, выражаются в виде неблагоприятного воздействия одного вида микроорганизма на другой, приводящего к повреждению и даже к гибели последнего. Микроорганизмы-антагонисты распространены в почве, воде и организме человека и животных. Хорошо известна антагонистическая активность представителей нормальной микрофлоры толстого кишечника человека - бифидобактерии, лактобацилл, кишечной палочки и др., являющихся антагонистами гнилостной микрофлоры.

Механизм антагонистических взаимоотношений разнообразен. Распространенной формой антагонизма является образование антибиотиков - специфических продуктов обмена микроорганизмов, подавляющих развитие микроорганизмов других видов. Существуют и другие проявления антагонизма, например большая скорость размножения, продукция бактериоцинов, в частности колицинов, продукция органических кислот и других продуктов, изменяющих рН среды.

4.7. Микрофлора растительного лекарственного сырья, фитопатогенные микроорганизмы, микробиологический контроль лекарственных средств

Растительное лекарственное сырье может обсеменяться микроорганизмами в процессе его получения: инфицирование происходит через воду, нестерильную аптечную посуду, воздух производственных помещений и руки персонала. Обсеменение происходит также за счет нормальной микрофлоры растений и фи-топатогенных микроорганизмов - возбудителей заболеваний растений. Фитопатогенные микроорганизмы способны распространяться и заражать большое количество растений.

Микроорганизмы, развивающиеся в норме на поверхности растений, относятся к эпифитам (греч. epi - над, phyton - растение). Они не наносят вреда, являются антагонистами некоторых фитопатогенных микроорганизмов, растут за счет обычных выделений растений и органических загрязнений поверхности растений. Эпифитная микрофлора препятствует проникновению фитопатогенных микроорганизмов в растительные ткани, усиливая тем самым иммунитет растений. Наибольшее количество эпифитной микрофлоры составляют грамотрицательные бактерии Erwinia herbicola, образующие на мясопептонном агаре золотисто-желтые колонии. Эти бактерии являются антагонистами возбудителя мягкой гнили овощей. Обнаруживают в норме и другие бактерии - Pseudomonas fluorescens, реже Bacillus mesentericus и небольшое количество грибов. Микроорганизмы находятся не только на листьях, стеблях, но и на семенах растений. Нарушение поверхности растений и их семян способствует накоплению на них большого количества пыли и микроорганизмов. Состав микрофлоры растений зависит от вида, возраста растений, типа почвы и температуры окружающей среды. При повышении влажности численность эпифитных микроорганизмов возрастает, при понижении влажности - уменьшается.

В почве, около корней растений, находится значительное количест

Кроме спор, которые отличаются высокой устойчивостью к ионизирующим излучениям, известны высокорадиорезистентные бактерии, не образующие спор. Высокорадиорезистентные бактерии чаще всего встречаются среди кокков. Поверхность различных изделий медицинского назначения, а также воздух помещений, где эти изделия производятся, бывают загрязнены различными бактериями, в том числе сарцинами, которые отличаются особенно высокой устойчивостью к ионизирующим излучениям. К коккам относится и хорошо известный Micrococcus radiodurans, изолированный из облученного мяса Anderson с соавторами . Спектрофотометрический анализ пигмента радио устойчивых микрококков, выделенных Anderson, показал, что большинства пигментов - каротеноиды . Пигменты, изолированные из радиоустойчивых клеток, были чувствительны, к облучению. Однако высокой радиорезистентностью обладали и беспигментные варианты микрококка . В дальнейшем микрококк, выделенный Anderson, привлек внимание радиобиологов и получил название Micrococcus radiodurance. Он был более устойчив не только к действию рентгеновых лучей или гамма-излучения, но и к облучению ультрафиолетом. Микрококк оказался в 3 раза более устойчивым к ультрафиолетовым лучам, чем кишечная палочка. Для задержки синтеза ДНК в клетках микрококка требуются доли, в 20 раз более высокие, чем те, которые вызывают аналогичный эффект у кишечной палочки.

Можно предположить, что высокая радиорезистентность микрококка связана с особой системой репарации поражений, вызываемых облучением. Отмечена различная природа репараций повреждений Micrococcus radiodurnnce, возникающих в результате ультрафиолетовых облучений и действия ионизирующих излучений .

Высокорадиорезистентные бактерии были выделены из пыли предприятий, производящих медицинские изделия из пластмасс в Дании Christensen с соавторами , Это были Streptococcus Faccium., оказалось, что радиорезистентность различных штаммов одного и того же вида микроорганизмов значительно варьирует. Так, для большинства штаммов Sir, faecium доза 20 - 30 кГр является бактерицидной, и лишь единичные штаммы выдерживают облучение в дозе 40 кГр. Штаммы Str. faecium, выделенные из пыли, оказались более радиорезистентными. Хотя большинство штаммов погибало при облучении в дозах от 20 до 30 кГр, однако некоторые штаммы (4 из 28 исследованных) выдерживали облучение в дозе до 45 кГр.

Концентрация микробных клеток в облучаемом объекте

Одной из причин, играющей существенную роль в эффективности лучевой стерилизации, является концентрация микробных клеток в облучаемом объекте.

В 1951 г, Hollander и соавторы установили, что чувствительность бактерий к облучению является функцией концентрации клеток. С уменьшением концентрации в облучаемой суспензии увеличивается её радиочувствительность 10 7 клеток являлись оптимальной концентрацией бактерий, при которой действие ионизирующих излучений было наиболее эффективным, Многие исследователи отмечали, что стерилизующий эффект облучении зависит как от доли облучения, так и от густоты и объема облучаемой взнеси (7, 36, 75, 141 - 143). При облучении Е. coli бета-лучами от ускорителя Ван-де-Граафа (2 МэВ) было установлено, что абсолютно стерилизующая доза зависит только от концентрации облучаемой суспензии. Между концентрацией микробов и дозой, убивающей 100% клеток, существует прямая пропорциональная зависимость: чем меньше густота облучаемой взвеси, тем меньше доза облучения, дающая полный бактерицидный эффект .

Рисунок 2.1 - Кривые инактивации различных микроорганизмов.

1 - M. radiodurans R; 2 - Staphylococci; 3 - Micrococci; 4 - Coryneform rod; 5 - Spores; 6 - Str. faecium.

При облучении культуры бактерий кишечной палочки стерилизующее действие гамма-излучения для сравнительно негустых взвесей (8*10 5 --10 8 микробных тел на 1 мл) было достигнуто при дозе 2 кГр. Облучение более густой микробной взвеси, содержащей 10 10 микробных тел на1 мл в дозе 2 кГр не давало бактерицидного эффекта. Даже при облучении в дозе 4 и 5 кГр иногда наблюдался рост единичных колоний. Полная стерилизация взвесей, содержавших 10 10 и 2*10 10 микробных тел в 1 мл, была достигнута лишь при облучении в дозе 6 кГр. Дальнейшее увеличение количества микробных тел в 1 мл облучаемой среды не требовало повышения дозы облучения для полного бактерицидного эффекта. Так. взвесь дизентерийных бактерий Флекснера в концентрации 7*10 10 микробных тел в 1 мл была полностью инактивирована дозой 6 кГр. К наиболее радиоустойчивым микроорганизмам относится сарцина. При облучении густых взвесей различных микроорганизмов, как более радиоустойчивых, так и менее радии устойчивых, в дозах 1, 2, 4, 8 кГр и 15 кГр наблюдалась зависимость.между снижением количества выживших микроорганизмов и повышением дозы облучения. Чем выше доза облучения, тем меньшее количество микроорганизмов выживало после облучения. Полное стерилизующее действие было достигнуто при облучении микроорганизмов в концентрации 4*10 10 млрд. микробных тел в 1 мл при дозе 15 кГр. Эта доля убивала и наиболее устойчивых, микроорганизмов - сарцину и сенную палочку.

Таким образом, увеличение концентрации микроорганизмов в облучаемом объекте повышает их радиоустойчивостъ. Это положение справедливо для микроорганизмов с различной радиочувствительностью.

Однако увеличение радиоустойчивости облучаемой взвеси не является следствием формирования радиоустойчивости у облученных клеток. После облучения густых взвесей в бактерицидных дозах выживают единичные особи, образующие колонии микробов при высеве на агар. Изучение радиочувствительности этих выживших бактерий показало, что они не стали более устойчивыми к облучению по сравнению с исходной культурой бактерий. Это явление может иметь место при облучении взвесей микроорганизмов значительно меньшей густоты. Оно известно в литературе под названием "хвостон" . Изучение хвостов также показало, что выжившие после облучения в смертельных дозах бактерии не обладают повышенной радиочувствительностью. Объяснение наблюдаемым явлениям следует искать среди причин, обусловливающих гибель микроорганизмов от ионизирующих излучений. Наиболее вероятной причиной повышения радиоустойчивости микроорганизмов при увеличении концентрации является уменьшение парциального давления делящихся клеток. Во время деления клетки ядро становится более уязвимым к облучению .

Микроорганизмы, по чувствительности к радиационному действию, обычно располагают в таком порядке: - наиболее чувствительны бактерии, затем плесени, дрожжи, споры бактерий, вирусы. Однако это разделение не абсолютно, так как среди бактерий есть виды более радиоустойчивые, чем вирусы.

Радиочувствительность микроорганизмов модифицируют различные факторы, как внутренние: генетическая природа самой клетки, жизненная фаза клетки и другие, так и внешние: температура, концентрация кислорода и других газов, состав и свойства среды в которой производится облучение, а также тип радиационного воздействия и его мощность и другие факторы. Радиочувствительность микроорганизмов значительно ниже, чем у растений и животных на 1-2 порядка, в ряде случаев бактерицидный эффект для некоторых видов может быть достигнут только при значительных дозах: 1-2 Мрад.

Уже на первых этапах исследования радиационной чувствительности микроорганизмов было показано, что при дозе 5000 Р значительно снижается выживаемость кишечной палочки, а при дозе 20 кР погибает 95 % бактерий. Культура микроорганизмов каждого вида содержит смесь клеток, различных по чувствительности к радиации. Например для культуры кишечной палочки 66% LD50 соответствовала доза 1,2 крад, а для 34 % бактерий - 3,5 крад. При облучении бактерий кишечной группы гамма лучами, их инактивация происходит в пределах от 24 до 168 крад, а гибель всех клеток при дозах около 300 крад.

Для получения одинакового биологического эффекта у различных видов микроорганизмов требуются различные дозы излучения. Эти различия зависят от ряда биологических особенностей облучаемых бактерий, условий облучения, влияния внешней среды и других факторов. Особое значение придается неодинаковой чувствительности нуклеинового обмена и ДНК различных организмов к радиационному облучению.

Чувствительность бактерий к радиации значительно изменяется внутри одного и того же вида и, даже, популяции бактериальных клеток. Популяция клеток состоит из бактерий, располагающихся по устойчивости к радиации в вариационный ряд, так же, как и по другим биологическим признакам. Поэтому в популяции всегда присутствуют особо радиорезистентные клетки, для того, чтобы их убить, нужно облучать более мощными дозами, чем те, при которых погибает основная масса клеток более радиочувствительных. Грамположительные бактерии менее чувствительны к облучению, чем грамотрицательные.

Споры бактерий обладают очень низкой радиочувствительностью, но и среди неспорообразующих микроорганизмов известны организмы радиоустойчивость которых может превышать устойчивость спор. Чаще всего они принадлежат к кокам или сарцинам. Известны микрококки, у которых полулетальная доза равна 400 крад (4 кГр). При лучевой стерилизации мяса, рыбы и других продуктов наиболее часто после облучения в дозах от 600 до 1500 крад обнаруживали кокков. Примером высокой радиоустойчивости могут быть также бактерии, выделяемые из вод атомных реакторов.

Ближний ультрафиолет (УФ) - излучение с длиной волны 400 - 320 нм - даже в невысоких дозах оказывает на бактерий определенное действие. Так, при освещении ближним УФ подвижных клеток Е. coli или Salmonella typhimurium сначала наблюдается увеличение частоты кувырканий клеток, т.е. репеллентный эффект, затем кувыркания полностью прекращаются и наступает паралич жгутиков, т.е. свет нарушает механизмы движения и таксиса. При этом хромофором является флавопротеин.

В сублетальных дозах ближний УФ вызывает замедление роста культур, главным образом за счет удлинения лаг-фазы. Скорость деления клеток также несколько снижается, подавляется способность бактерий поддерживать развитие фага и угнетается индукция ферментов. Эти эффекты определяются в основном поглощением УФ-лучей 4-тиоуридином - необычным основанием, присутствующим в 8-й позиции у многих тРНК прокариот (но не у эукариот). Наибольший эффект оказывает свет длиной волны около 340 нм. Возбужденный светом 4-гиоуредин образует сшивки с цитозином, находящимся в 13-м положении в тРНК, что препятствует связыванию тРНК с аминокислотами и приводит к увеличению образования гуанозинтрифосфата на рибосомах и к приостановке синтеза РНК и белка соответственно. У Bacillus subtillis обнаружена и другая чувствительная к ближнему УФ-система, у которой воспринимающим свет хромофором является менахинон.

При относительно высоких дозах облучения ближним УФ наблюдаются мутагенные и летальные эффекты. Нарушение ДНК вызывают не столько сами УФ-лучи, сколько различные другие возбужденные светом молекулы. И в этих эффектах имеет значение поглощение ближнего УФ 4- тиоуредином. Мутагенное и летальное действие ближнего УФ в значительной степени зависит от присутствия кислорода.

Летальный эффект при облучении ближним УФ может быть связан с повреждением не только ДНК, но и мембран, в частности их транспортных систем. Чувствительность к ближнему УФ бактерии может сильно зависеть от стадии роста культуры, что не наблюдается при действии дальнего УФ.

Эффект действия ближнего УФ может быть опосредован фотосенсибилизатором. Так, в присутствии акридина у E.coli ближний УФ вызывает нарушение как ДНК, так и внешней цитоплазматической мембран, в результате чего клетки становятся чувствительными к лизоциму, детергентам, осмотическому шоку.

Ближний УФ может при невысоких дозах облучения вызывать фотопроекцию, т.е. снижать биологический эффект последующего облучения дальним УФ. Представление о механизме этого эффекта противоречивы. При относительно высоких дозах облучения ближним УФ может наблюдаться и противоположный эффект, т.е. усиление действия последующего облучения дальним УФ.

Средний УФ - это излучение с длиной волны 320 - 290 нм, и дальний УФ - с длиной волны 290 - 200 нм. Биологические эффекты действия среднего и дальнего УФ сходны. Как уже упоминалось, при облучении солнечным светом гибель бактерий связана в основном с действием УФ. Нижний предел длины волны света, попадающего на земную поверхность, составляет около 290 нм, в исследованиях же используют источники света с меньшей длиной волны. Считают, что резистентность организма к солнечной радиации, как правило, соответствует его устойчивости к неионизирующему излучению от искусственных источников.

ДНК интенсивно поглощает УФ в области 240 - 300 нм, т.е. в области среднего и дальнего УФ, с пиком поглощения в области 254 нм. Этим объясняется высокая мутагенная и летальная эффективность облучения средним и дальним УФ. Образование пиримидиновых димеров в ДНК является основным механизмом, обусловливающим летальный и мутагенный эффекты. В состав димеров могут входить 2 соседних тиминовых или цитозиновых остатка либо 1 тиминовый и 1 цитозиновый остатки. Под влиянием УФ-облучения происходит также гидроксилирование цитозина и урацила, образование цитозин-тиминовых аддуктов, сшивок ДНК с белком, формирование поперечных сшивок ДНК, разрывы цепей и денатурация ДНК. Такие повреждения возрастают при повышении интенсивности облучения.

Ионизирующее излучение составляет определенный компонент естественной радиации, определяемый нестабильными изотопами, постоянно находящимися в почве и атмосферных осадках. В областях залегания радиоактивных минералов естественный фон радиации повышен. Изотопы могут попадать в живые организмы и тогда они подвергаются внутреннему облучению. Бактерии иногда способны накапливать некоторые элементы в очень больших количествах.

Ионизирующее излучение возникает также под влиянием космических лучей. Космическое пространство служит источником первичных космических лучей, которые дают начало вторичным, воздействующим на живые организмы. Интенсивность такого излучения зависит от географической широты, особенно от высоты над уровнем моря, и приблизительно удваивается каждые 1500 м. В период солнечных вспышек фон космической радиации повышен. Искусственное ионизирующее излучение возникает в результате испытаний ядерного оружия, работы АЭС, применения радиоизотопов в медицинских, научных и других целях. Наличие таких источников - причина того, что микроорганизмы в наши дни подвергаются высоким дозам облучения.

Ионизирующие излучения также вызывают повреждения ДНК, которые принято подразделять на прямые и опосредованные, возникающие в связи с образованием свободных радикалов. Повреждения преимущественно представляют собой одноцепочечные или двухцепочечные разрывы молекулы ДНК.

Радиорезистентность различных бактерий варьирует в очень широких пределах и контролируется многими генами. Сравнительно легко могут быть получены мутанты, более радиорезистентные или радиочувствительные. Радиорезистентность зависит прежде всего от работы различных систем репарации и регуляции. При этом степени устойчивости организма к излучениям различных типов, особенно УФ и ионизирующим излучениям, могут не совпадать. Различные репарационные системы бактерий будут рассмотрены ниже.

Установлена связь радиоустойчивости бактерий с особенностями ее местообитания. Так, микроорганизмы, выделенные из радоновых минеральных источников, оказываются в 3 - 10 раз более резистентными к радиации, чем организмы тех же видов, выделенные из нерадиоактивной воды. В охладительных системах ядерных реакторов, где средняя доза излучения превышает 10 6 ФЭР (физический эквивалент рентгена), обитают разные бактерии, в частности представители рода Pseudomonas. Однако в основном трудно найти разумное объяснение адаптационного значения высокой радиоустойчивости некоторых бактерий. Особенно высока радиоустойчивость некоторых кокков, выделенных из облученных продуктов. В данном случае очевидно, что облучение могло служить фактором отбора, но не фактором, вызвавшим адаптацию. Так, доза УФ, необходимая для инактивации 90% клеток УФ-резистентного штамма Е. coli, составляет около 1000 эрг/мм “ 2 , в то время как для достижения такого же эффекта у Deinococcus radiodurans требуется доза в 10000 - 15000 эрг/мм" 2 или 5 х 10 5 рад в случае радиоактивного облучения. Еще большей устойчивостью к УФ- и у-излучению обладает кокк Deinococcus radiophilus. Как уже упоминалось, уровень радиорезистентности определяется главным образом степенью развитости репарационных систем. Deinococcus radiodurans, видимо, способен репарировать даже двухнитевые разрывы ДНК, летальные для большинства микроорганизмов.

Степень радиоустойчивости некоторых бактерий значительно превышает предельный уровень радиации, с которым организмы могут сталкиваться в природе. Наиболее вероятным объяснением этого несоответствия может быть предположение о том, что радиоустойчивость - лишь одно из многообразных проявлений действия систем широкого назначения. Правильнее было бы говорить о степени устойчивости бактерий к определенным нарушениям в структуре их клеток, чем об устойчивости к воздействию определенных факторов среды, поскольку одинаковые нарушения могут быть вызваны разными причинами. Это относится прежде всего к системам репарации повреждений ДНК.