Мифы об атомной энергетике и фактическое положение вещей
Владимир Сливяк, 02/09-2010

В мире «ядерный ренессанс» - АЭС строятся по всему миру

Дискуссия о возможном строительстве АЭС действительно идет в разных странах, однако это скорее «ренессанс дискуссии», чем «ренессанс атомной энергетики». В Германии по-прежнему действует закон о выводе из эксплуатации всех АЭС, в Испании действует курс правительства на «мягкий» отказ от атомной энергетики, в Австрии и Дании правительства свыше 30 лет не рассматривают «атомный вопрос» всерьез. В США с 1973 года не было заказов на строительство новых реакторов из-за нежелания инвесторов вкладывать средства с большим риском. Даже в Италии, где после 22х лет анти-атомного моратория правительство вновь заговорило об АЭС – нет ни одного проекта атомной станции в стадии строительства. Один реактор строится в Финляндии, однако он лишь заменит выводимые из строя мощности. Даже Франция, где до 80% энергии производится на АЭС, не сможет наращивать или удерживать настолько высокую долю «мирного атома» в энергобалансе. Длительный перерыв в строительстве АЭС в этой стране привел к тому, что с выводом старых реакторов из эксплуатации, который начнется в течение ближайших лет, будет неуклонно снижаться процент выработки атомной энергии. Таким образом, говорить о каком-либо развитии атомной энергетики во Франции тоже нельзя. Лишь в регионе Юго-Восточной Азии по-прежнему есть планы масштабного атомного развития, однако прогресс там напрямую зависит от инвестиций и ситуации на рынках развитых стран, находящихся в глубоком кризисе. Предыдущий «атомный бум» в Азии прекратился из-за международного финансового кризиса 1998 года, недавнее возрождение интереса к атомным технологиям наткнулось на современный финансовый кризис.

Россия зарабатывает на строительстве АЭС за рубежом
Современный «рынок» строительства АЭС зависит не от способности заказывающей страны оплатить расходы, а наоборот – от способности компании-застройщика привлечь под свой проект экспортные кредиты и частные инвестиции из разных стран. Таким образом, страны, не обладающие финансовыми средствами для строительства АЭС, могут получить атомные станции в долг. В некоторых случаях, бедные страны частично расплачиваются товарами. Смысл участия в таких проектах для атомной промышленности не в том, чтобы заработать средства для себя или бюджета своей страны, а в том, чтобы загрузить промышленные мощности. Оплачивается эта загрузка мощностей, как правило, из бюджета той страны, где базируются строители АЭС. Зарубежные проекты «Росатома» по строительству атомных станций нередко финансируются за счет средств российского бюджета. В случае с проектом АЭС в Турции, «Росатом» будет строить 4 атомных реактора за счет кредитов, взятых под гарантии российского правительства, а затем владеть станцией и продавать энергию с него по фиксированной низкой цене турецким властям. Российским налогоплательщикам один реактор на турецкой АЭС обойдется примерно в $7,7 млрд с учетом банковских процентов по кредитам. Это самые дорогие реакторы в истории России, а срок их окупаемости будет напрямую зависеть от желания турецких властей покупать оговоренное количество энергии. Построенный ранее российский газопровод в Турцию работает на половину своей мощности из-за того, что местные власти не выполняют своих обязательств в отношении объемов закупаемого газа.

Стоимость АЭС сопоставима с другими источниками энергии
На сегодняшний день, капитальные затраты на строительство атомной станции превышают аналогичные затраты для любого другого источника энергии, за исключением некоторых видов возобновляемых источников энергии. Однако, если в случае с АЭС новые и более дорогие системы безопасности вызывают постоянный рост капитальных затрат, то в случае с возобновляемыми источниками наблюдается снижение стоимости. Если десять лет назад строительство одного реактора в России обходилось в среднем в $ 1 млрд, то сегодняшние энергоблоки (типа ВВЭР-1200) обходятся в сумму от 3-5 млрд евро. Затраты на создание инфраструктуры здесь не включены, хотя в некоторых случаях они могут повысить стоимость проекта еще на 50%. Например, в случае с Балтийской АЭС два блока стоят около 6 млрд Евро, а с учетом инфраструктуры – более 9 млрд евро. При этом, проектная стоимость почти никогда не соответствует окончательной стоимости с учетом задержек. Современные реакторы на Западе являются более технологически продвинутыми и поэтому стоят еще дороже. Проекты новых АЭС, обсуждаемые сейчас в США, достигают величины $10 млрд за энергоблок. Вместе с этим, проекты ветровых станций уже обходятся дешевле. И даже некогда крайне дорогая солнечная энергия может составить конкуренцию новым проектам в атомной сфере. Так, в случае с плавучей АЭС стоимость одного КВт установленной мощности - около $7000, что равняется стоимости КВт установленной мощности на небольшой солнечной станции, которую планируется возвести около Кисловодска в 2011 году. При этом, солнечная станция будет обеспечивать теплом и электроэнергией строящийся район города полностью, люди в этом районе смогут дышать чистым воздухом и не опасаться опасных аварий.

АЭС вырабатывают самую дешевую энергию
Цена энергии в России не равняется цене ее издержек на ее производство. Так, в цену атомной энергии не включены затраты на обращение с радиоактивными отходами в течение всего времени, пока они будут оставаться опасными. Также, не включены расходы на демонтаж атомных реакторов, которые по окончании срока службы необходимо выводить из эксплуатации. Налогоплательщик в любом случае эти расходы оплачивает, но через разные статьи государственного бюджета, что не позволяет посчитать реальную стоимость энергии, производимой атомными станциями. Очевидно, что реальная стоимость атомной энергии намного выше, по сравнению с любыми другими источниками энергии в связи с тем, что только атомная энергетика производит отходы, которые необходимо безопасно хранить не менее 240.000 лет. Кроме того, по утверждениям сотрудников российской атомной промышленности, стоимость демонтажа реактора как минимум равняется стоимости строительства.

Альтернативы развитию атомной энергетики в России нет
В настоящий момент атомная энергетика вырабатывает около 16% российского электричества. Уже сегодня можно вывести из эксплуатации все АЭС, заменив «мирный атом» на природный газ, что будет безопаснее и дешевле. Кроме того, Россия, пожалуй, единственная из крупных стран, которые не развивают возобновляемые источники энергии, хотя их потенциал очень большой. По данным Международного энергетического агентства, возобновляемая энергетика может обеспечить до 30% от объема энергии, который вырабатывается сегодня в России. Еще один источник – энергоэффективность и экономия энергии. По данным Министерства энергетики РФ, потенциал в этой области составляет свыше 50%. Это означает, что при внедрении основных мер по энергоэффективности можно сэкономить половину той энергии, которая расходуется сегодня. Очевидно, что никакого недостатка в источниках энергии на сегодняшний момент не существует и атомная энергетика не является незаменимой.

Возобновляемые источники энергии слишком дороги и не подходят для России
Раньше возобновляемые источники энергии действительно были настолько дороги, что экономического смысла в их использовании не было. Однако за последние годы в разных странах объем инвестиций в этой области многократно вырос, вследствие чего произошло удешевление технологий, связанных с получением энергии от возобновляемых источников. По предварительным оценкам специалистов, в Приэльбрусье солнечная станция окупила бы себя за 5 лет, а в Кисловодске за 7 лет. Для сравнения, срок окупаемости атомных станций может достигать 20 лет. Не смотря на то, что развитие возобновляемых источников энергии не поддерживается правительством, такие источники энергии уже активно используются в России. В южных регионах России запланировано строительство нескольких небольших солнечных станций. В Калининграде, далеко не самом солнечном городе России, муниципалитет оборудует солнечными нагревательными приборами новое социальное жилье. В Мурманской области строится крупная ветровая станция. Более того, возобновляемые источники энергии можно использовать далеко не только в таких районах, где очень много солнечных дней или чрезвычайно сильно дует ветер, а практически повсеместно при условии, что происходит комбинирование различных технологий. При условии получения государственной помощи в таких размерах, в которых она оказывалась гражданской атомной промышленности на протяжении полувека – станции на возобновляемых источниках энергии уже давно стали бы самыми дешевыми, а Россия находилась бы в лидерах технологического развития. Однако на возобновляемые источники энергии не выделяется и тысячной доли того, что тратится на нужды атомной энергетики. При этом, атомная промышленность недавно спустила на воду первую плавучую АЭС, которая обошлась налогоплательщику примерно в $7000 за КВт установленной мощности. Солнечная станция в Кисловодске, стоимость которой близка к плавучей АЭС, не требует ядерного или какого-либо другого топлива, не может взорваться, загрязняя радиацией все вокруг, не загрязняет радиоактивными аэрозолями или другими вредными выбросами атмосферу в безаварийном режиме, а кроме того ее не нужно охранять военными кораблями. Не смотря на эти преимущества, средства для этой станции искали много лет и только сейчас появилась надежда на ее строительство в 2011 году.

АЭС можно строить быстро и в большом количестве
В России на сегодня есть техническая возможность производить один комплект реакторного оборудования в год. Зарубежные машиностроительные мощности, к сожалению для «Росатома», заняты. Учитывая технически возможные темпы строительства новых АЭС, ресурсов хватает в лучшем случае для замены старых атомных реакторов, которые необходимо выводить из строя из-за окончания продленного срока эксплуатации. Если же учитывать масштабные амбиции по строительству новых АЭС в других странах, то вряд ли в течение ближайших 20 лет удастся удержать долю атомной энергии на прежнем уровне (16% от количества вырабатываемой в стране электроэнергии). Таким образом, в случае России нет никаких оснований говорить о возможном «ядерном ренессансе», подразумевающем увеличение доли атомной энергетики: «Росатому» будет чрезвычайно трудно даже сохранить нынешнее положение вещей и не допустить снижения доли атомной энергетики в энергобалансе страны к 2020 году.

АЭС могут выдержать падение пассажирского самолета
По словам главного инженера проекта Балтийской АЭС, произнесенным на круглом столе "Росатома" в Калининграде в июле 2009 года, моделирование падения крупного пассажирского самолета в случае с реактором ВВЭР-1200 никогда не проводилось. Расчет был сделан для случая с падением небольшого самолета, размером до 20 тонн, для реактора предыдущего поколения (ВВЭР-1000). Тем не менее, над местом строительства этой АЭС проходит международный воздушный коридор, а пролетающие над стройплощадкой самолеты в несколько раз тяжелее, чем небольшой пассажирский самолет. Кроме того, недалеко от стройплощадки Ленинградской АЭС-2 с ВВЭР-1200 в стадии строительства также летают крупные самолеты, но и это не сподвигло атомную промышленность провести необходимые исследования.

Отработавшее ядерное топливо (ОЯТ) это не ядерные отходы, а энергетическое сырье
В соответствии с российским законодательством, отходами могут считаться такие радиоактивные материалы, в отношении которых не предусмотрено дальнейшего использования. Следовательно, ОЯТ с реакторов РБМК (11 блоков из 31-го в России) является ядерными отходами, так как в отношении этого топлива нет никаких планов по дальнейшему использованию, а также отсутствует экономически оправданная и готовая к промышленному применению технология переработки. Отсутствие в России мощностей по переработке использованного топлива с энергоблоков типа ВВЭР-1000 также указывает на то, что на данный момент использование этого вида высокорадиоактивных отходов невозможно. Если ограничиться гражданскими атомными станциями, переработка ОЯТ возможна лишь в отношении топлива с реакторами ВВЭР-440 (6 энергоблоков в России) и БН-600 (1 энергоблок). Таким образом, использованное топливо с 24-х из 31-го энергоблока не может считаться сырьем и является ядерными отходами. Более того, переработка ОЯТ производится на единственном в России предприятии – комбинате «Маяк» в Челябинской области, оборудование которого характеризуется высокой степенью износа. В результате переработки, выделяется плутоний, а количество радиоактивных отходов радикально увеличивается – на 1 тонну ОЯТ после переработки приходится 150-200 тонн побочных радиоактивных отходов. Таким образом, переработка ОЯТ не может считаться эффективным подходом к сокращению количества ядерных отходов. Не смотря на все проблемы с ОЯТ, "Росатом" продолжает ввозить ядерные отходы из-за рубежа. В 2009 году в Россию с болгарской АЭС Козлодуй было ввезено 57 тонн ОЯТ.

Урановые «хвосты» - не представляют никакой опасности
Этот чрезвычайно токсичный и радиоактивный материал вывозили в Россию с западноевропейских комбинатов по обогащению урана начиная с 1996 года. Только немецко-голландско-британская компания Urenco направила в этот период свыше 120.000 тонн «хвостов» на 4 российских предприятия. В этот же период «хвосты» поступали из Франции, общим количеством нескольких десятков тысяч тонн. В настоящий момент остается неясным, будут ли происходить французские транспортировки и дальше, так как контракт действует до 2014 года. Что касается Urenco, то под давлением экологических организаций она объявила о прекращении этой деятельности в конце прошлого года. По данным Ростехнадзора, контейнеры с урановыми «хвостами» подвержены коррозии. В отношении этих контейнеров существует «риск разгерметизации». По данным атомной промышленности, если содержимое лишь одного контейнера попадет в окружающую среду, риск летального исхода для человека может возникнуть в радиусе более 30 км. (Price, BNFL, 1978)

Атомная энергетика может решить проблему изменения климата
Исследования наглядно демонстрируют, что в ядерном топливном цикле количество выбрасываемых парниковых газов примерно равно количеству выбросов в цикле с современной газовой станцией. (Oekoinstitut, 1997) Более того, чтобы добиться существенного снижения выбросов парниковых газов за счет атомной энергетики, необходимо возвести в несколько раз больше атомных реакторов, чем было построено за всю историю развития человеком этого вида энергетики. В условиях ограниченных времени и финансовых ресурсов, атомная энергетика является наименее эффективным способом борьбы с изменением климата и серьезно уступает по этому показателю возобновляемым источникам энергии.

Атомная энергия – экологически-чистая и не наносит никакого вреда окружающей среде
На каждой стадии ядерного топливного цикла вырабатывается большое количество радиоактивных отходов. Далеко не полный список включает в себя миллионы тонн отвалов в местах добычи урана на территории бывшего СССР, сотни тысяч тонн урановых «хвостов» на российских предприятиях по обогащению урана, свыше 20 тысяч тонн ОЯТ, наработанного на АЭС в России. В большинстве случаев, проблема с радиоактивными отходами не решается из-за слишком большого объема отходов и необходимости крупнейших инвестиций, которые никогда не окупятся. Однако есть и такие отходы, в отношении которых до сих пор не существует надежной технологии по их изоляции от людей и окружающей среды. В частности, нет экономически обоснованной технологии изоляции ОЯТ на все время, пока оно будет оставаться опасным. Этот срок составит не менее 240.000 лет. Наиболее продвинутым в этой области считается проект могильника для отработавшего топлива в Юкка Маунтайн (США), который рассчитан на хранение ядерных отходов в течение 1 млн. лет. Однако из-за высокой цены (свыше 90 млрд. долл) и недостаточного научного обоснования безопасности хранения ОЯТ в настоящий момент проект остановлен. Кроме того, необходимо отметить, что даже в безаварийном режиме работы АЭС постоянно выбрасывают в окружающую среду радиоактивные вещества.

Население России не против развития атомной энергетики
Опрос, проведенный в конце 2007 года РОМИР, выявил, что 79% россиян негативно относятся к строительству АЭС, если бы оно происходило в их регионе. За строительство АЭС в собственном регионе высказываются менее 10%. Тем не менее, атомная промышленность нередко нуждается в подтверждении ложного тезиса о поддержке населением проектов новых АЭС. Для этого придуманы различные методы манипуляции. Например, в 2007 году в Калининградской области экологи организовали опрос общественного мнения, который продемонстрировал, что 67% жителей относятся к строительству АЭС негативно. В 2008 году представители атомной промышленности организовали опрос, в рамках которого калининградцам было предложено выбрать один из нескольких вариантов развития энергетики в регионе. При этом сторонники атомной энергетики могли выбрать только один вариант, а для остальных было сформулировано несколько вариантов. В результате, 67% противников строительства АЭС были разделены на несколько групп, каждая из которых в отдельности оказалась меньше, чем про-атомная. Картина в целом осталась той же, ведь большинство населения выступило против строительства атомной станции, но в цифрах этого опроса оказывалось, что большинство (менее 30%) – за АЭС. По другим атомным вопросам у россиян мнение еще более неприятное для «Росатома». Свыше 90% граждан России выступают против ввоза радиоактивных отходов из-за рубежа, а в некоторых регионах эта цифра достигает 100% (Приморский край). Как правило, мнение россиян не зависит от того, используется ли их регион для транзита или для окончательного складирования иностранных радиоактивных отходов. На вопрос, каким видят энергетическое будущее России ее жители, более 70% отвечает, что развитие должно происходить за счет возобновляемых источников энергии. Наименее популярными являются угольная и атомная энергетика.

("Экозащита!", сентябрь 2010)

Согласно наиболее распространенному в научной и околонаучной литературе определению, низкоэнергетические ядерные реакции (lowenergy nuclear reactions, общепринятая аббревиатура - LENR) - это такие ядерные реакции, при которых трансмутация химических элементов протекает при сверхнизких энергиях, и не сопровождается появлением жесткого ионизирующего излучения.

Под холодным ядерным синтезом обычно понимают реакцию слияния ядер изотопов водорода при температуре, существенно меньшей, чем в термоядерных реакциях. К великому сожалению, основная масса физиков не делает различия между LENR и ХЯС.

Существует расхожее мнение, что такие процессы согласно канонам ядерной физики невозможны. Это мнение было даже узаконено решением комиссии по лженауке при Президиуме РАН в конце 1990-х годов, о чем объявил ее тогдашний руководитель академик Э. П. Кругляков.

В результате к лженауке оказались причислены классические научные работы. Например, под определение LENR, данное Комиссией, подпадает электронный захват, открытый Л.У. Альварецом в 1937 году. Обратная реакция, так называемый β- распад в связанное состояние, также, несомненно, относится к LENR- процессам. Первое упоминание о нем датировано 1947 годом. Теория β- распада в связанное состояние была создана в 1961 г. Этот процесс был исследован экспериментально в крупном международном ядерном центре в Дармштадте в конце XX века.

Но и это еще не все. В 1957 году в ядерном центре в Беркли было открыто явление мюонного катализа ядерных реакций синтеза в холодном водороде! Оказалось, что если в молекуле водорода один из электронов заменить на мю- мезон, то ядра атомов водорода, входящих в эту молекулу, могут вступить в реакцию слияния.

Причем, если эта молекула тяжелого водорода, то реакция слияния ядер идет с очень высокой вероятностью. Группу экспериментаторов возглавлял все тот же Л.У. Альварец. Другими словами, как «низкоэнергетическая трансмутация химических элементов», так и «холодный ядерный синтез» (а это не совсем одно и то же) были открыты одним и тем же ученым.

За эти, и другие выдающиеся открытия (создание пузырьковой камеры), он был удостоен Нобелевской премии по физике в 1968 году.

Так что российская Комиссия по лженауке слегка перестаралась в борьбе «за чистоту рядов». Случай, когда на столь высоком уровне оказалось де-факто аннулированным решение Нобелевского комитета, не имеет прецедентов в истории науки!

Девиантное поведение научного сообщества в отношении проблем LENR и ХЯС не заканчивается на пренебрежении мнением Нобелевского комитета. Если открыть журнал «Успехи физических наук» т. 71. вып. 4. за 1960 год, то там можно увидеть обзор Я.Б. Зельдовича (академик, трижды Герой социалистического труда) и С.С. Герштейна (академик) под названием «Ядерные реакции в холодном водороде».

В нем кратко изложена и предыстория открытия ХЯС, а также приведена ссылка на практически недоступную работу А.Д. Сахарова «Пассивные мезоны». Кроме того, в обзоре упоминается, что явление ХЯС (мю-катализ в холодном водороде) было предсказано сэром Ф.Ч. Франком (член Лондонского Королевского общества), А.Д. Сахаровым (академик, трижды Герой социалистического труда, лауреат Нобелевской премии мира) и упомянутым выше академиком Я.Б. Зельдовичем.

Но, несмотря на это, руководитель Комиссии по лженауке РАН академик Э.П. Кругляков, как отмечалось, объявил ХЯС лженаукой, хотя о мю-катализе и пьезоядерных реакциях в статье «Ядерные реакции в холодном водороде» было написано очень ясно, подробно и доказательно.

Единственное, что может в какой-то степени служить оправданием чрезмерно вольного обращения с терминологией, использованной в полемике Комиссией по лженауке, так это то, что ее нападки на «трансмутологов» в основном были направлены на пресечение любых исследований по реакциям холодного ядерного синтеза в конденсированных средах (condensed matter nuclear science - CMNS).

К сожалению, при этом «под раздачу» попали и весьма перспективные научные направления.

Как показал анализ истории CMNS, уничтожение этого научного направления Комиссия по лженауке при Президиуме РАН осуществляла отнюдь не бескорыстно. Расправа велась с очень опасным конкурентом, победа которого в научном споре могла означать полное прекращение бюджетного финансирования работ по проблеме управляемого термоядерного синтеза (УТС).

В условиях экономического кризиса 1990-х годов это означало бы закрытие многих НИИ, входящих в РАН. Академия наук допустить этого не могла, и не стеснялась в выборе средств борьбы с конкурентами.

Но и это - только одна, и, похоже, не самая главная причина, по которой ХЯС оказался «гадким утенком» от ядерной физики. Любой специалист, хорошо знакомый с проблемой УТС, может подтвердить, что теоретические запреты на явления LENR и ХЯС являются столь серьезными, что преодолеть их не представляется возможным.

Именно этот аргумент повлиял на отношение большинства физиков к обсуждаемой проблеме. Именно ясное понимание того, насколько серьезны аргументы теоретиков, заставляло многих, даже в высшей степени квалифицированных физиков, с порога отметать любые сообщения об экспериментальном обнаружении LENR, ХЯС или CMNS.

Продолжительное игнорирование большинством физиков экспериментально подтвержденного факта существования низкоэнергетических ядерных процессов является прискорбным заблуждением.

Описываемые процессы многие ученые до сих пор относят к разряду несуществующих по известному принципу: «этого не может быть, потому, что этого не может быть никогда».

К этому следует добавить, что кроме «эффекта шорности», заставлявшего физиков-ядерщиков скептически относиться к самой возможности низкоэнергетической трансмутации химических элементов и холодного ядерного синтеза, зловещую роль в прохладном отношении профессионалов к излагаемой тематике сыграли различного рода «трансмутологи», претендовавшие на изобретение нового «философского камня».

Непрофессионализм «новых алхимиков» и вызываемое ими раздражение у профессионалов, хорошо знакомых с сутью проблемы, привели к тому, что исследования в перспективной области человеческого знания оказались замороженными на десятилетия.

Однако в процессе яростной критики работ «трансмутологов» ученые, высказывавшие официальную точку зрения на проблему холодного ядерного синтеза, нечаянно подзабыли, что термин «лженаука» означает скорее похвалу, нежели осуждение.

Ведь давно известно, что вся современная наука родом из лженауки. Физика - из метафизики, химия - из алхимии, медицина - из знахарства и шаманства.

Авторы полагают, что нет особого смысла перечислять многочисленные конкретные примеры. Но то, что идеи Джордано Бруно, Галилео Галилея и Николая Коперника считались их современниками не просто лженаучными, а сущей ересью, забывать не стоит. Так уже бывало и в новейшей истории...

В настоящее время в похожую историю попала физика холодного ядерного синтеза и низкоэнергетической трансмутации химических элементов. И, отнюдь, не в одной России!

Справедливости ради надо отметить, что комиссия по лженауке, аналогичная российской, имеется и в США. Работает она точно так же, как и в РФ. Причем в законопослушной Америке запрет на федеральное финансирование «лженаучных» исследований является абсолютным, а в России эти запреты некоторые особо ушлые деятели науки ухитряются каким-то образом обходить. Впрочем, и в других странах тоже.

Пока официальная российская наука избавлялась от «лжеученых», американские, французские и японские конкуренты не теряли времени даром. Например, в Соединенных Штатах исследования холодного синтеза были объявлены лженаукой только для гражданских лиц.

В лабораториях военно-морского флота США исследования велись с начала 1990-х годов. По непроверенным сведениям, более 300 физиков и инженеров практически вслепую, не имея сколько-нибудь приемлемой теории, свыше 20 лет работали в Ливерморе над созданием установок холодного ядерного синтеза. Их усилия увенчалась созданием опытных образцов энергетических реакторов ХЯС мощностью около 1 МВт.

В настоящее время в США и Италии ведутся работы по созданию LENR- реакторов (генераторов тепловой энергии), работающих на никель-водородных элементах. Безоговорочным лидером этих исследований является А. Росси.

К процессу исследований LENR и ХЯС подключились также корпорации Leonardo Technologies Inc. (LTI), Defkalion Green Technologies (Греция), E.ON (Италия) и др. Холодный ядерный синтез - это уже давным-давно не наука.

Это инженерная практика, притом, весьма успешная. И только в России по-прежнему пресекаются любые попытки гласной государственной поддержки научных работ в этом направлении.

Цели настоящей публикации - показать возможности описания LENR, ХЯС и CMNS в терминах ортодоксальной ядерной физики, и оценка перспектив практического использования этих явлений в энергетике и других областях человеческой деятельности.

История открытия LENR

Первое упоминание о явлении низкоэнергетической трансмутации химических элементов датировано 1922 годом. Химики С. Айрион и Дж. Вендт, исследуя образцы вольфрама в электрохимических экспериментах, зарегистрировали выделение гелия. Этот результат не был воспринят научным сообществом, в том числе и потому, что Э. Резерфорду так и не удалось его воспроизвести.

Другими словами, в первой же работе, посвященной проблеме ядерных превращений при низких энергиях, ее авторы С. Айрион и Дж. Вендт наступили на пресловутые «грабли невоспроизводимости», о которые впоследствии спотыкались практически все ученые, пытавшиеся исследовать этот интереснейший феномен.

Более того, основная критика многочисленных работ по холодному синтезу связана с плохой воспроизводимостью результатов, полученных различными энтузиастами, не имеющими специфической профессиональной подготовки экспериментатора-ядерщика.

В то же время, существуют надежные экспериментальные данные, полученные в лучших научных лабораториях, неопровержимо указывающие на то, что «запрещенные» процессы имеют место.

В связи с этим дословно приведем выводы академика И.В. Курчатова на лекции, прочитанной им 25 апреля 1956 г. на эпохальной конференции в английском атомном центре в Харуэлле:

«Жесткое рентгеновское излучение возникает при прохождении больших токов через водород, дейтерий и гелий. Излучение при разрядах в дейтерии всегда состоит из коротких импульсов.

Импульсы, вызываемые нейтронами и рентгеновскими квантами, могут быть точно сфазированы на осциллограммах. При этом оказывается, что они возникают одновременно.

Энергия рентгеновских квантов, появляющихся при импульсных электрических процессах в водороде и дейтерии, достигает 300 - 400 кэВ. Следует отметить, что в тот момент, когда возникают кванты с такой большой энергией, напряжение, приложенное к разрядной трубке, составляет всего лишь 10 кВ».

Было также указано, что наблюдаемые реакции нельзя считать термоядерными. Этот вывод относится, в первую очередь, к гелию, у которого заряд ядра вдвое больше, чем заряд протона, и преодолеть кулоновский барьер в исследованной группой Курчатова области энергий невозможно.

По мотивам работ, выполнявшихся под руководством И. В. Курчатова, был даже снят великий фильм «Девять дней одного года». Физик, проф. В. С. Стрелков, выполнявший эксперименты по сильноточному электрическому разряду в газах, результаты которых докладывал в Харуэлле академик И. В. Курчатов, в отличие от киногероя Дмитрия Гусева, которого гениально сыграл в этом фильме Алексей Баталов, до сих пор работает в РНЦ «Курчатовский институт».

Более того, 25 ноября 2013 года состоялся семинар "Эксперименты на токамаках" на тему "Проект ТИН-АТ - возможный путь к демо- и гибридным реакторам", руководителем которого является проф. В.С. Стрелков.

Экспериментальные данные Курчатова по ядерным реакциям при сильноточном электрическом разряде в гелии согласуются с данными, полученными П.Л. Капицей на два года раньше. Это Петр Леонидович сообщил в своей Нобелевской лекции.

Таким образом, экспериментальные данные, полученные лучшими физиками ХХ века, четко указывают на существование до сих пор неизученных механизмов нейтрализации электрического заряда легчайших атомных ядер в области низких энергий.

Героический период становления советской ядерной науки не обошелся без подвигов на ниве LENR. Молодой, энергичный и очень талантливый физик И.С. Филимоненко создал гидролизную энергетическую установку, предназначенную для получения энергии от реакций «теплого» ядерного синтеза, идущих при температуре всего 1150 о С. Топливом для реактора служила тяжелая вода.

Реактор представлял собой металлическую трубу диаметром 41 мм и длиной 700 мм, изготовленную из сплава, содержавшего несколько граммов палладия.

В 1962 году И.С. Филимоненко подал заявку на изобретение «Процесс и установка термоэмиссии». Но Государственная патентная экспертиза отказала в признании заявленного технического решения изобретением на том основании, что термоядерные реакции не могут идти при столь низкой температуре.

Филимоненко экспериментально установил, что после разложения тяжелой воды электролизом на кислород и дейтерий, растворяющийся в палладии катода, в катоде происходят реакции ядерного синтеза.

При этом отсутствует как нейтронное излучение, так и радиоактивные отходы. Филимоненко предложил идею экспериментов еще в 1957 г, работая в оборонной промышленности.

Идея была воспринята и поддержана его непосредственным руководством. Было принято решение о начале исследований, и в кратчайшие сроки получены первые положительные результаты.

Дальнейшая биография И.С. Филимоненко - это основа для написания десятка авантюрных романов. За свою долгую жизнь, полную взлетов и падений, Филимоненко создал несколько вполне работоспособных реакторов ХЯС, но до разума властей так и не достучался. Совсем недавно, 26 августа 2013 года, Иван Степанович покинул нас на 89 году жизни.

Злополучная скандальная тематика не обошла стороной и Академию наук. Эффект аномального увеличения выхода нейтронов неоднократно наблюдался в опытах по колке дейтериевого льда.

В 1986 году академик Б.В. Дерягин с сотрудниками опубликовал статью, в которой были приведены результаты серии экспериментов по разрушению мишеней из тяжелого льда с помощью металлического бойка. В этой работе сообщалось, что при выстреле в мишень из тяжелого льда при начальной скорости бойка более 100 метров в секунду регистрировались нейтроны.

Результаты Б.В. Дерягина лежали вблизи коридора ошибок, воспроизведение их было непростым делом, а интерпретация механизма реакции была не вполне корректной.

Однако даже с поправкой на «электростатическую» интерпретацию экспериментов Б.В. Дерягина и его сотрудников, их работу можно смело отнести к числу важнейших решающих экспериментов, подтверждающих сам факт существования низкоэнергетических ядерных реакций.

Другими словами, если не принимать во внимание ранней работы С. Айриона и Дж. Вендта, результаты которой так никогда и никем не были воспроизведены, и закрытых работ И.С. Филимоненко, то можно считать, что холодный ядерный синтез был официально открыт именно в России.

Ажиотажный взрыв интереса к обсуждаемой проблеме возник только после того, как М. Флейшман и С. Понс на пресс-конференции 23 марта 1989 года сообщили об обнаружении ими нового явления в науке, известного сейчас как холодный ядерный синтез или синтез при комнатной температуре. Они электролитическим путем насыщали палладий дейтерием - проводили электролиз в тяжелой воде с палладиевым катодом.

При этом наблюдалось выделение избыточного тепла, рождение нейтронов, а также образование трития. В том же году было сообщение об аналогичных результатах, полученных в работе С. Джонса, Е. Палмера, Дж. Цирра и др. К сожалению, результаты М. Флейшмана и С. Понса оказались плохо воспроизводимыми, и на долгие годы были отвергнуты академической наукой.

Однако далеко не все эксперименты, в которых исследовались явления ХЯС и LENR, являются невоспроизводимыми.

Например, не вызывает сомнений достоверность и воспроизводимость представленных в работе И.Б. Савватимовой результатов регистрации остаточной радиоактивности методом авторадиографии поверхности катодных фольг из палладия, титана, ниобия, серебра и их сочетаний после облучения ионами дейтерия в тлеющем разряде.

Побывавшие в плазме тлеющего разряда электроды становились радиоактивными, хотя напряжение на них не превышало 500 В.

Результаты работ группы И.Б. Савватимовой, выполненных в Подольске на НПО «Луч», были подтверждены в независимых экспериментах. Они легко воспроизводимы, и однозначно свидетельствуют в пользу существования процессов LENR и ХЯС. Но самое замечательное в экспериментах И.Б. Савватимовой, А.Б. Карабута и др. состоит в том, что они относятся к числу решающих.

Весной 2008 года заслуженный профессор Йосиаки Арата из университета Осака, и его китайская коллега и неизменная соратница, профессор Юэчан Чжан из Шанхайского университета, в присутствии многочисленных журналистов представили очень красивый эксперимент.

На глазах у изумленной публики было продемонстрировано выделение энергии и образование гелия, не предусмотренные известными законами физики.

Эти результаты были удостоены Императорской премии «За бесценный вклад в науку и технику», которая в Японии котируется выше Нобелевской премии. Результаты эти были воспроизведены группой А. Такахаши.

К сожалению, всех упомянутых выше аргументов оказалось недостаточно, чтобы реабилитировать незаслуженно скомпрометированную тематику.

Стандартные возражения противников LENR и ХЯС

Зловещую роль в судьбе холодного ядерного синтеза сыграли его первооткрыватели М. Флейшман и С. Понс, анонсировавшие сенсационные результаты в нарушение всех правил ведения научной дискуссии.

Поспешность выводов и практически полное отсутствие знаний в области ядерной физики, продемонстрированные авторами открытия, привели к тому, что тематика ХЯС оказалась дискредитированной, и получила официальный статус лженауки во многих, но не во всех, странах, располагающих крупными центрами ядерных исследований.

Стандартные возражения, с которыми сталкиваются докладчики, рискнувшие огласить результаты крамольных исследований на международных конференциях по ядерной физике, обычно начинаются с вопроса: «В каких рецензируемых научных журналах, имеющих высокий индекс цитируемости, опубликованы надежные результаты, неопровержимо доказывающие существование обсуждаемого явления?». Ссылки на результаты солиднейших исследований, выполненных в университете Осака, оппонентами обычно отклоняются.

Иезуитская логика оппонентов лежит далеко за пределами научной этики, т.к. аргумент типа «Не там опубликовано» не может быть отнесен к разряду достойных возражений уважающего себя эксперта. Если не согласен с автором - возражай по существу. Напомню, что Роберт Юлиус Майер опубликовал работу, в которой был сформулирован закон сохранения энергии, в фармацевтическом журнале. На наш взгляд, наиболее достойным ответом упомянутой группе оппонентов являются десятки работ, опубликованных в авторитетных научных изданиях, и доложенных на самых престижных конференциях.

Ответы на другие аргументы противников LENR и ХЯС содержатся в сотнях работ, выполненных на деньги различных промышленных корпораций, включая такие гиганты, как Sony и Mitsubishi, и т.д.

Результаты этих исследований, квалифицированно выполненных, и уже доведенных до выхода на рынок сертифицированной и коммерчески выгодной промышленной продукции (реакторов А. Росси), по-прежнему продолжает отрицать научное коммьюнити, и безоговорочно принимают на веру сторонники гонимого научного направления.

Однако вопросы веры лежат вне плоскости науки. Поэтому «официальная наука» серьезно рискует попасть в число религий, бездумно отрицающих тезис, что практика - есть критерий истины.

Однако у академической науки имеются весьма серьезные аргументы для подобного отрицания, так как даже перечисленные выше работы, в которых приведены не вызывающие никаких сомнений экспериментальные данные, уязвимы для критики, поскольку ее, критику, не выдерживает ни одна из упоминаемых в них теорий.

Проблемы LENR и ХЯС и перспективы их разрешения

Гипотетический экзотический нейтринный атом «нейтроний» рождается в результате столкновения свободного электрона с атомом водорода, а распадается он на протон и электрон. Возможность существования нейтринных атомов связана с тем, что электрон и протон притягиваются не только благодаря тому, что обе частицы имеют электрический заряд, но и за счет так называемого слабого взаимодействия, из-за которого происходит β- распад ядер радиоактивных изотопов.

В июле 2012 года А. Росси был принят Бараком Обамой. В результате этой встречи проект А. Росси получил поддержку Президента Соединенных Штатов Америки, и на продолжение работ по холодному ядерному синтезу NASA было выделено $5 млрд., которые успешно осваиваются.

В США уже создан реактор LENR, существенно превосходящий по своим характеристикам опытный реактор А. Росси. Создали его специалисты NASA, используя передовые космические технологии. Запуск этого реактора состоялся в августе 2013 года.

В настоящее время в Греции работает корпорация Defkalion, отделившаяся от работающей в Италии и США компании Leonardo, основанной А. Росси. На сегодняшний день 850 компаний из 60 стран мира выразили готовность заключить с корпорацией Defkalion лицензионное соглашение.

Глобальные последствия работ А. Росси для России могут быть как позитивными, так и негативными. Ниже приведены возможные сценарии развития дальнейших событий в энергетике и глобалистике.

Очевидно, что от своевременной и адекватной реакции властей России на проводимые в США, Германии и Италии работы по «холодному синтезу» будет во многом зависеть и судьба российской экономики и страны в целом.

Сценарий 1, прогноз негативный. В случае если Россия продолжит политику наращивания поставок газа и нефти, невзирая на новые технологии LENR и ХЯС, Андреа Росси, имея работающий образец промышленного реактора, быстро организует его серийное производство на принадлежащем ему заводе во Флориде.

Себестоимость тепловой энергии, производимой этим ректором, в десятки раз ниже себестоимости тепловой энергии, получаемой при сжигании углеводородов. Америка уже третий год является крупнейшим в мире добытчиком газа.

Следует учесть, что США добывают в основном не природный, а сланцевый газ. Используя даровую энергию холодного ядерного синтеза, Америка начнет демпинговать на мировом рынке газа и синтетического бензина, производимого на основе процесса Фишера-Тропша или «юаровского процесса».

К Америке немедленно присоединяются Китай, ЮАР, Бразилия и ряд других стран, традиционно производящих значительное количество синтетического топлива из различных видов природного сырья.

Это приведет к мгновенному обрушению рынка нефти и газа с катастрофическими экономическими и политическими последствиями для России с ее нынешней сырьевой экономикой.

Сценарий 2, прогноз позитивный. Россия активно включается в исследования низкотемпературных ядерных реакций и запускает в обозримом будущем производство радиационно-безопасных LENR- и ХЯС-реакторов отечественной конструкции.

Следует отметить, что реакторы холодного синтеза являются источниками проникающей радиации, поэтому по нормам радиационной безопасности их нельзя будет использовать на транспорте до тех по, пока не будут созданы надежные средства защиты от этого вида радиации.

Дело в том, что реакторы LENR и ХЯС излучают «странное» излучение, фиксируемое пока только в виде специфических треков на специальных подложках. Воздействия «странного» излучения на биообъекты пока не изучены, и исследователи должны проявлять крайнюю осторожность при проведении экспериментов.

Вместе с тем, реакторы LENR и ХЯС большой мощности взрывоопасны, и на сегодняшний день никто не знает, как регулировать скорость энерговыделения в этих монстрах, а трансмутологи тщательно скрывают от политиков список человеческих жертв, принесенных на алтарь «холодного термояда».

Однако человечеству придется преодолеть эти и другие препятствия для получения дешевой электроэнергии, так как запасы углеводородов на Земле ограничены, а накопление радиоактивных отходов, образующихся от использования в реакторах АЭС ядерного топлива, возрастает.

Избежать падения мировых цен на нефть и газ в нынешней геополитической ситуации представляется невозможным, что чревато серьезными последствиями для России.

Однако если нашим ученым и инженерам удастся создать радиационно-безопасные LENR- и ХЯС-реакторы для производства дешевой электроэнергии, то российским промышленникам удастся постепенно захватить значительные сегменты мировых рынков продукции, требующей сегодня для своего производства значительных энергозатрат.

Так, используя дешевую энергию холодного ядерного синтеза, Россия может захватить значительную часть рынка пластмасс и пластмассовых изделий, поскольку их производство является энергоемким, и цена пластика напрямую зависит от себестоимости тепловой и электрической энергии.

Атомные электростанции на базе реакторов LENR и ХЯС позволят снизить себестоимость металлургического производства, т.к. себестоимость одного кВт.ч в этом случае снизится, как минимум, втрое.

Газификация углей и производство дешевого синтетического бензина из угля с использованием дешевой электроэнергии, производимой АЭС на базе ХЯС-реакторов, позволят России расширить производство и сбыт синтетических углеводородных энергоносителей.

Модернизация атомной энергетики, и увеличение при этом высвободившейся доли нефти и природного газа позволит расширить объемы производства продукции нефте- и газохимии. Плавный и контролируемый передел мировых рынков углеводородного сырья позволит России получить значительные конкурентные преимущества перед странами ОПЕК, и укрепить свои позиции в мире.

Воздействие излучения реакторов холодного синтеза позволяет в десятки раз сократить «время жизни» ядерных отходов, извлеченных из отработанного ядерного топлива АЭС.

Это явление открыто И.С. Филимоненко и экспериментально подтверждено на Сибирском химическом комбинате ныне покойным В.Н. Шадриным, который в конце 1990-х годов исследовал механизмы дезактивации радиоактивных отходов.

Используя эти наработки, Россия может полностью захватить рынок АЭС, возводя на территории действующих станций реакторы на основе холодного синтеза, которые будут не только вырабатывать энергию вместо выводимых из эксплуатации энергоблоков, но и дезактивировать радиоактивные отходы на территории АЭС, практически полностью исключив при этом экологические риски, связанные с их транспортировкой.

Все без исключения исследователи проблемы ХЯС, включая действительных членов Российской академии наук, не входящих в Комиссию по лженауке при Президиуме РАН, в один голос утверждают: холодный ядерный синтез есть объективная реальность.

В настоящее время оружейные приложения обсуждаемой тематики разрабатываются в крупных ядерных центрах США и других промышленно развитых стран. Гражданские аспекты применения ХЯС исследуются в Томском атомном центре и на Сибирском химическом комбинате в соответствии с утвержденными научно-исследовательскими программами РАН.

Кроме перечисленных, просматриваются также другие направления применения ХЯС и LENR: медицина (лучевая терапия и производство изотопов для диагностики и лечения онкологических заболеваний), биология (радиационная генная инженерия), длительный аэрокосмический мониторинг лесных массивов, нефтепроводов, газопроводов и других инженерных сооружений с помощью беспилотных летательных аппаратов с ядерным реактором.

Если все перечисленные особенности и преимущества новой ядерной энергетики использовать по-хозяйски, то Россия, в обозримом будущем, может занять лидирующее положение в мировой экономике. Существенное повышение энерговооруженности России укрепит ее оборонный потенциал, и усилит влияние на мировой политической арене.

«Атомный проект-2»

Одной из причин, по которой большая часть научной общественности прохладно относится к обсуждаемой проблеме, является чрезмерно оптимистическая оценка возможности обеспечения человечества даровой энергией, присутствующая в работах многочисленных изобретателей реакторов холодного синтеза.

К сожалению, обещания быстрого, легкого, а главное, дешевого успеха выглядят заманчиво только в проектах или бизнес-планах.

Для того чтобы LENR-энергетика действительно смогла выполнить свою историческую миссию и спасти человечество в будущем от жажды и голода, холода и жары, необходимо решить ряд архиважных задач, связанных с тем, что на пути глобального перевода энергетики с углеводородов на альтернативную ядерную энергетику стоит множество препятствий. Перечислим некоторые из них.

Теория ХЯС, как отмечалось, все еще находится в зачаточном состоянии.

В настоящем обзоре приведены только отдельные выдержки из работ одного из авторов настоящей публикации, профессора Ю.Л. Ратиса. И хотя качественно картина LENR и ХЯС уже вполне ясна, однако до создания рабочих методик проектирования и строительства «под ключ» соответствующих реакторов пока еще далеко.

Имеющиеся опытные образцы реакторов, как правило, демонстрационных, в большинстве своем, кроме реактора А. Росси, имеют относительно небольшую мощность.

Энтузиасты создавали их либо в надежде получить Нобелевскую премию за свое открытие, либо получить инвестиционные ресурсы для продолжения работ. Если не считать реактора А. Росси, в реакторах ХЯС реакции идут в неуправляемом режиме, поскольку разработчики в основной массе просто не знакомы ни с квантовой теорией, ни с ядерной физикой, а без этих знаний создать эффективную систему управления реактором невозможно.

На основе имеющегося опыта создания миниатюрных неуправляемых реакторов ХЯС малой мощности в принципе невозможно спроектировать энергетический реактор управляемого синтеза, пригодный для выработки тепловой и электрической энергии в промышленных масштабах.

Однако имеется обоснованная надежда преодолеть эти препятствия в течение одного - двух десятилетий. Ведь в Советском Союзе LENR-реакторы работали еще в 1958 году, и нашими учеными была создана основанная на известных законах физики теория соответствующих процессов.

Для реализации, условно говоря, «Атомного проекта-2» необходимо подготовить пакет предложений, который должен содержать технико-экономическое и оборонное обоснование проекта, включая:

а) перечень разрабатываемых конструкций и технологий гражданского, военного и двойного назначения;

б) описание географии проекта с обязательным обоснованием расположения хотя бы одного полигона, с учетом того, что на ранних этапах исследования ХЯС (конец 1950-х годов) мощность взрыва на электростанции ХЯС мощностью 6 МВт составила 1,5 килотонны ТНТ-эквивалента;

в) приблизительную смету проекта и этапы освоения выделенных бюджетных, внебюджетных и сторонних привлекаемых средств;

г) перечень объектов инфраструктуры и оборудования, необходимого для создания первых экспериментальных установок и измерительных приборов, необходимых для регистрации низкоэнергетических ядерных реакций (LENR), протекающих в реакторах ХЯС, а также управления LENR-процессами;

д) схему управления проектом;

е) список возможных проблем, сопряженных с реализацией «Атомного проекта-2», не включенных в настоящую статью.

Все технологические прорывы в истории нашей страны начинались с копирования соответствующих европейских или американских разработок. Петр Первый «прорубил окно в Европу», создав армию, флот и промышленность, необходимую для их оснащения и модернизации. Атомная и ракетно-космическая промышленность в Советском Союзе начинались с копирования «изделий» Манхеттенского проекта и разработок Вернера фон Брауна.

Энергетика LENR родилась в России полвека назад, когда на Западе о таких технологиях никто даже мечтать не смел. Объявление LENR и ХЯС лженаукой привело к тому, что «забугорные» конкуренты уже обогнали Россию на самом стратегически важном для обеспечения ее государственной безопасности направлении - энергетической безопасности.

Настало время бить в колокола, и собирать под знамена «Атомного проекта- 2» тех немногих российских ядерщиков, которые еще в состоянии продуктивно работать. Но для этого руководству страны потребуется проявить политическую волю. Грех будет, если упустим последний шанс.

А. А. Просвирнов ,

инженер, Москва

Ю. Л. Ратис ,

д. ф-м. н., профессор, Самара

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов - это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция - это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы - обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной - применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии - это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии - это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской и Фукусиме.

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

Борцы с ядерной энергетикой вроде бы смогли убедить мир в том, что ядерная энергетика опасна. Движение за ядерное разоружение сошло на нет вместе с поколением, видевшим Хиросиму. В США хранение, содержание и планы применения ядерного вооружения окутаны такой плотной завесой секретности, чтобы даже мысли не возникало, насколько опасно ядерное , прежде всего для самих американцев. В военно-корпоративных кругах опасаются, что любая дискуссия о безопасности ядерного оружия неминуемо перерастет в широкое обсуждение стратегии использования ядерного оружия, экономики и политики ядерного вооружения, да и самого главного вопроса: нужно ли оно вообще.

Книга Эрика Шлоссера « » раскрывает секреты содержания ядерного арсенала Америки и показывает, как сочетание человеческих ошибок и технологической сложности представляет серьезную опасность для человечества. Шлоссер исследует дилемму, существовавшую еще на заре ядерного века: как развернуть оружие массового уничтожения и самим не оказаться уничтоженным этим оружием?

Эрик Шлоссер - серьезный журналист-следователь, берущийся за трепещущие и жизненные проблемы современной Америки. Его книга «Нация фастфуда» стала мировым бестселлером, по ней снят фильм, который обошел экраны всего мира. Влиятельный журнал «Fortune» называл «Нацию фастфуда» лучшей книгой года по бизнесу. Сериал «Безумие от анаши» - о торговле марихуаной в Америке. Его книги об эксплуатации рабочих-мигрантов на клубничных полях Калифорнии и об порнографии в США подняли важные вопросы, которые не сходят с повестки дня и сегодня. Шлоссер заслужил признание как в левых кругах, так и в консервативных, среди движений протеста и в кабинетах большого бизнеса.

Новая тема, безопасность ядерного вооружения, стала сюрпризом только на первый взгляд .

С прежними книгами Эрика Шлоссера ее роднит добротность, огромное количество нового материала, который автор вводит в общественный оборот. Все его книги, по сути, имеют общую тему: мощные корпоративно-бюрократические комплексы, препятствующие обсуждению давно назревших проблем.

Оглядываясь на всю историю, от начала холодной войны до сегодняшнего дня, трудно себе представить, сколько туману, лжи и дезинформации нагнало американское правительство на проблемы содержания ядерного оружия.

«Команда и контроль» (command and control) - это оборот из американского военного лексикона, означающий, что вооружение находится в боевой готовности, чтобы его использовать тогда, когда нужно его использовать, чтобы оно не попало в нежелательные руки, и чтобы при использовании вооружения строго соблюдалась субординация. Со всем этим в американских вооруженных силах всегда были серьезные проблемы. Самое первое испытание «Тринити» («Троица») по проверке ядерной технологии чуть не обернулось катастрофой из-за неожиданно начавшейся грозы.

Так получилось, что я закончил читать книгу Шлоссера 18-го сентября. Ровно 33 года назад в этот день на базе ВВС США возле Дамаска (штат Арканзас) только чудом удалось избежать ядерного взрыва, который мог бы стереть с лица земли весь штат и превратить в радиоактивную пустыню всю восточную часть США. Книга рассказывает о серии инцидентов, каждый из которых мог бы вызвать ядерную катастрофу. Дамасский инцидент произошел во время дежурного техосмотра ракеты-носителя. Военнослужащий ВВС работал на лесах на самом верху ракеты, на высоте десятиэтажного дома, рядом с ядерной боеголовкой крупнейшей американской ракеты. Он уронил гаечный ключ. Ключ упал в стартовую шахту и каким-то образом пробил в корпусе брешь, чем вызвал массивную утечку ракетного топлива.

Шлоссер провел интервью с отставниками и инженерами, годами занимавшимися обслуживанием ядерного оружия. Все они в один голос утверждали, что, если даже намеренно кидать ключ в шахту, то ничего не должно случиться. Тем не менее, авария случилась и поставила Стратегическое командование ВВС США в ужасную ситуацию. Там попросту не знали, что делать. Пожар мог начаться от малейшей искры. Ракета была оснащена боеголовкой, которая по мощности превосходила все бомбы, которые использовали все воюющие стороны во Второй мировой войне, вместе взятые, включая ядерные боеголовки, сброшенные на Хиросиму и Нагасаки.

Их взрыв мог бы уничтожить половину населения США и изменить мировую историю.

Американцев спасло чудо, вернее, два чуда. Первое чудо: разработчики ракеты сумели отстоять устройства безопасности в борьбе против военных заказчиков, требовавших простоты и удобства в эксплуатации вооружения. Времена были относительно либеральные. Напуганные советскими «спутниками» генералы на время отложили в сторону свой традиционный американский антиинтеллектуализм и прислушивались к «яйцеголовым умникам».

Несмотря на старания, взрыв все-таки произошел. Огненное облако поднялось на 300 метров над авиабазой. Однако ядерная боеголовка чудом уцелела. Ее выбросило воздушной волной за ворота военной базы. Специалисты рассказали, что это была старая бомба, которая вполне могла бы взорваться от удара. Бомба в Дамасском инциденте была уже ветхой, морально устаревшей, не соответствовавшей стандартам, но ее не списывали, так как после войны во Вьетнаме Пентагон проводил сокращения бюджета, и начальство решило сохранить старое оружие.

Во время Дамасского инцидента были потери. Техобслуживание ядерного вооружения поручили 19-20-летним солдатам ВВС (хотя назвать их солдатами по-американски некорректно, солдаты - только в сухопутных силах, которые по-американски зовут армией). Один человек погиб. Многие военнослужащие были комиссованы из армии с ранениями. Еще больше людей получили заряды радиации. Старая ракета была радиоактивной, и работать с ней приходилось в скафандрах.

Личный состав проявил необыкновенный героизм в борьбе с аварией. Люди добровольно шли в радиоактивную ракетную шахту, хотя знали, на что идут. Любая искра могла вызвать взрыв. Как бывает сплошь и рядом, героизм одних, как правило, рядовых и младшего состава - это следствие глупости, халатности, трусости других, как правило, старших командиров и начальников.

В Вашингтоне нужно поставить памятник военнослужащим и гражданским, героически погибшим во время холодной войны при попытках предотвратить ядерные взрывы, при исполнении заданий, проявившим служебный героизм, уверен Шлоссер.

Kнига не рисует карикатурных образов вояк-милитаристов вроде истерического генерала Джека Риппера (Потрошителя) из классической черной комедии Стенли Кубрика «Доктор Стрейнджлав», в обход президента развязавшего ядерную войну против СССР. Эдвард Теллер или Генри Киссинджер, бывшие прототипами Доктора Стрейнджлава, тоже были куда сложнее кинозлодея.

Там были разные люди, ответственные, думающие, хорошие профессионалы, и они ответственно относились к своему долгу защитить Америку. Они шли и сами наблюдали ядерные испытания, лезли в самое пекло кратера, чтобы понять, как будет реагировать солдат в боевых условиях.

Хорошо написан портрет генерала Куртиса Ламея, прототипа генерала Бака Тержедсона из комедии Кубрика.

Молва обвиняла Ламея в том, что он пытался спровоцировать Америку на войну с СССР. Генерал Ламей был настроен очень консервативно и изоляционистски. Он не любил иностранцев и черных, однако не верил в американский империализм, выступал против войны во Вьетнаме и хотел, чтобы правительство занималось домашними делами.

Ламей знал войну не понаслышке. Он был боевым пилотом, участвовал в воздушных битве за Японию. Генерал своими глазами видел страшные разрушения, которым подверглась эта страна. Видел он последствия ядерной бомбардировки японских городов и уничтожение американской авиацией гражданского населения, получивших в трудах германских историков название огненных холокостов. Огненная бомбардировка Токио 26 мая 1945 года была куда более разрушительной и унесла куда больше жизней, чем Хиросима и Нагасаки.

Вместе с тем как военный профессионал генерал Ламей придерживался агрессивной доктрины - если уж воевать, то необходимо нанести по русским упреждающий удар всеми силами и стереть СССР с лица земли, чтобы они не смогли ответить. Ламей был противником «ограниченных» войн и верил, что, если воюешь, то надо воевать всеми средствами, либо не воевать вообще. Он не раз говорил, что ограниченная война ограничена лишь вдовами, которые оплакивают мужей, павших в бою.

История американских вооруженных сил знает тысячи инцидентов, которые могли бы обернуться ядерной аварией. «Сколько можно так кидать ядерные бомбы, пока одна из них не взорвется?.. Один такой инцидент обязательно обернется крупной катастрофой», - заключает публицист.

Окончание следует…

В течение следующих 50 лет человечество будет потреблять энергии больше, чем было израсходовано за всю предыдущую историю. Сделанные ранее прогнозы о темпах роста энергопотребления и развитии новых энерготехнологий не оправдались: уровень потребления растет намного быстрее, а новые источники энергии заработают в промышленном масштабе и по конкурентоспособным ценам не ранее 2030 года. Все острее встает проблема нехватки ископаемых энергоресурсов. Возможности строительства новых гидроэлектростанций тоже весьма ограниченны. Не стоит забывать и о борьбе с «парниковым эффектом», накладывающей ограничения на сжигание нефти, газа и угля на тепловых электростанциях (ТЭС).

Решением проблемы может стать активное развитие ядерной энергетики, одной из самых молодых и динамично развивающихся отраслей глобальной экономики. Все большее количество стран сегодня приходят к необходимости начала освоения мирного атома.

В чем преимущества ядерной энергетики?

Огромная энергоемкость

1 килограмм урана с обогащением до 4%, используемого в ядерном топливе, при полном выгорании выделяет энергию, эквивалентную сжиганию примерно 100 тонн высококачественного каменного угля или 60 тонн нефти.

Повторное использование

Расщепляющийся материал (уран-235) выгорает в ядерном топливе не полностью и может быть использован снова после регенерации (в отличие от золы и шлаков органического топлива). В перспективе возможен полный переход на замкнутый топливный цикл, что означает полное отсутствие отходов.

Снижение «парникового эффекта

Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. Ежегодно атомные станции в Европе позволяют избежать эмиссии 700 миллионов тонн СО2, а в Японии - 270 миллионов тонн СO2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу 210 млн тонн углекислого газа. По этому показателю Россия находится на четвертом месте в мире.

Развитие экономики

Строительство АЭС обеспечивает экономический рост, появление новых рабочих мест: 1 рабочее место при сооружении АЭС создает более 10 рабочих мест в смежных отраслях. Развитие атомной энергетики способствует росту научных исследований и интеллектуального потенциала страны.

Интерактивное приложение "Сравнение источников генерации электроэнергии"

«К примеру, вы хотите увеличить энергетические мощности вашей страны. Какой источник генерации электроэнергии выбрать? Давайте сравним угольную генерацию, гидроэлектростанцию, ветровую и солнечную электростанции, а также определим основные преимущества атомной энергетики. Запустите работу приложения и определите для себя оптимальный источник энергии для строительства».

Запустите видео, демонстрирующее основные возможности интерактивного приложения "Сравнение источников генерации электроэнергии":

Для работы с приложением:
1. Скачайте приложение по ссылке ниже.
2. Найдите с помощью файлового менеджера на своем компьютере исполняемый файл "ros-atom.exe" и запустите его.
3. Для корректного отображения изображения, установите расширение экрана 1920 х 1080.
4. Нажмите «Play!» для запуска приложения.

Важно! Для корректной работы приложения, пожалуйста, используйте компьютер на базе процессора i7, с операционной системой Windows 7 или 10х64, оперативной памятью не ниже 8 Gb, видеокартой не менее GTX77 и 128 Gb SSD.