Введение

Можно увидеть, что за более чем полуторатысячелетний период времени математическая наука в Греции имела значительные достижения.

В истории математики рассмотренный нами период существования Александрийской школы носит название «Первой Александрийской школы». С начала нашей эры на основе работ александрийских математиков начинается бурное развитие идеалистической философии: снова возрождаются идеи Платона и Пифагора, и эта философия неоплатоников и неопифагорейцев быстро снижает научное значение работ новых представителей математической мысли. Но вес же математическая мысль не замирает, а время от времени проявляется в работах отдельных математиков, таких как Диофант.

Развитию алгебры препятствовало то, что еще недостаточно вошли в употребление символические записи, намек на которые мы впервые встречаем в трудах Диофанта, пользовавшегося лишь отдельными символами и сокращениями записи.

Цель работы исследовать арифметику Диофанта.

Биография Диофанта

Диофант представляет одну из наиболее трудных загадок в истории науки. Нам не известны ни время, когда он жил, ни предшественники его, которые работали бы в той же области. Труды его подобны сверкающему огню среди полной непроницаемой тьмы.

Промежуток времени, когда мог жить Диофант, составляет полтысячелетия! Нижняя грань этого промежутка определяется без труда: в своей книге о многоугольных числах Диофант неоднократно упоминает математика Гипсикла Александрийского, который жил в середине II века до н.э. С другой стороны, в комментариях Теона Александрийского к «Альмагесту» знаменитого астронома Птолемея помещён отрывок из сочинения Диофанта. Теон жил в середине IV века н.э. Этим определяется верхняя грань этого промежутка. Итак, 500 лет!

Французский историк науки Поль Таннери, издатель наиболее полного текста Диофанта, попытался сумзить этот промежуток. В библиотеке Эскуриала он нашёл отрывки из письма Михаила Пселла, византийского учёного XI века, где говорится, что «учёнейший Анатолий, после того как собрал наиболее существенные части этой науки (речь идёт о введении степеней неизвестного и об их обозначениях), посвятил их своему другу Диофанту». Анатолий Александрийский действительно составил «Введение в арифметику», отрывки из которой приводят в дошедших до нас сочинениях Ямблих и Евсевий. Но Анатолий жил в Александрии в середине III века н.э. и даже более точно - до 270 года, когда он стал епископом Лаодакийским. Значит, его дружба с Диофантом, которого все называют Александрийским, должна была иметь место до этого. Итак, если знаменитый александрийский математик и друг Анатолия по имени Диофант составляют одно лицо, то время жизни Диофанта - середина III века н.э.

Сама же «Арифметика» Диофанта посвящена «достопочтенному Дионисию», который, как видно из текста «Введения», интересовался арифметикой и её преподаванием. Хотя имя Дионисий было в то время довольно распространённым, Таннери предположил, что «достопочтенного» Дионисия следует искать среди известных людей эпохи, занимавших видные посты. И вот оказалось, что в 247 году епископом Александрии стал некий Дионисий, который с 231 года руководил христианской гимназией города! Поэтому Таннери отождествил этого Дионисия с тем, которому посвятил свой труд Диофант, и пришёл к выводу, что Диофант жил в середине III века н.э. Мы можем, за неимением лучшего, принять эту дату.

Зато место жительства Диофанта хорошо известно - это знаменитая Александрия, центр научной мысли эллинистического мира.

После распада огромной империи Александра Македонского Египет в конце IV века до н.э. достался его полководцу Птолемею Лагу, который перенёс столицу в новый город - Александрию. Вскоре этот многоязыкий торговый город сделался одним из прекраснейших городов древности. Размерами его превзошёл впоследствии Рим, но долгое время ему не было равного. И вот именно этот город стал на многие века научным и культурным центром древнего мира. Это было связано с тем, что Птолемей Лаг основал Музейон, храм Муз, нечто вроде первой Академии наук, куда приглашались наиболее крупные учёные, причём им назначалось содержание, так что основным делом их были размышления и беседы с учениками. При Музейоне была построена знаменитая библиотека, которая в лучшие свои дни насчитывала более 700 000 рукописей. Неудивительно, что учёные и жаждущие знаний юноши со всего мира устремились в Александрию, чтобы послушать знаменитых философов, поучиться астрономии и математике, иметь возможность в прохладных залах библиотеки углубиться в изучение уникальных рукописей.

Музейон пережил династию Птолемеев. В первые века до н.э. он пришёл во временный упадок, связанный с общим упадком дома Птолемеев в связи с римскими завоеваниями (Александрия была окончательно завоевана в 31 году до н.э.), но затем в первые века н.э. он снова возродился, поддерживаемый уже римскими императорами. Александрия продолжала оставаться научным центром мира. Рим никогда не был в этом отношении её соперником: римской науки (мы имеем в виду естественные науки) просто не существовало, и римляне оставались верными заветам Вергилия, писавшего:

Тоньше другие ковать будут жизнью дышащую бронзу, -

Верю тому, - создадут из мрамора лики живые,

Красноречивее будут в судах, движения неба

Тростью начертят своей и вычислят звёзд восхожденья,

Ты же, римлянин, знай, как надо народами править.

И если в III-II веках до н.э. Музейон блистал именами Евклида, Аполлония, Эратосфена, Гиппарха, то в I-III веках н.э. здесь работали такие учёные как Герон, Птолемей и Диофант.

Чтобы исчерпать всё известное о личности Диофанта, приведём дошедшее до нас стихотворение-загадку:

Прах Диофанта гробница покоит; дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребёнком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять лет проведя сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Отсюда нетрудно подсчитать, что Диофант прожил 84 года. Однако для этого вовсе не нужно владеть искусством Диофанта! Достаточно уметь решать уравнение 1-й степени с одним неизвестным, а это умели делать египетские писцы ещё за 2 тысячи лет до н.э.

У осьминогов - по 8 ног, у морских звёзд - по 5.

Сколько в аквариуме морских животных, если всего конечностей - 39?

Диофант Александрийский - древнегреческий математик, живший предположительно в III веке нашей эры.

О подробностях его жизни практически ничего не известно. С одной стороны, Диофант цитирует Гипсикла (II век до н. э.); с другой стороны, о Диофанте пишет Теон Александрийский (около 350 года н. э.), - откуда можно сделать вывод, что его жизнь протекала в границах этого периода. Возможное уточнение времени жизни Диофанта основано на том, что его «Арифметика» посвящена «достопочтеннейшему Дионисию». Полагают, что этот Дионисий - не кто иной, как епископ Дионисий Александрийский, живший в середине III в. н. э.

В Палатинской антологии содержится эпиграмма-задача, из которой можно сделать вывод, что Диофант прожил 84 года:

Прах Диофанта гробница покоит; дивись ей и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился.

С нею, пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Используя современные методы решения уравнений можно сосчитать, сколько лет прожил Диофант. Составим и решим уравнение:

Решением этого уравнения является число 84. Таким образом, Диофант прожил 84 года.

Основное произведение Диофанта - «Арифметика» в 13 книгах. К сожалению, сохранились только 6 первых книг из 13.

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» (?ριθμ?ς) и обозначает буквой ς , квадрат неизвестной - символом (сокращение от δ?ναμις - «степень»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней. Знака сложения у Диофанта нет: он просто пишет рядом положительные члены, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент. Вычитаемые члены также записываются рядом, а перед всей их группой ставится специальный знак в виде перевёрнутой буквы Ψ . Знак равенства обозначается двумя буквами ?σ (сокращение от?σος - «равный»). Сформулированы правило приведения подобных членов и правило прибавления или вычитания к обеим частям уравнения одного и того же числа или выражения: то, что потом у ал-Хорезми стало называться «аль-джебр и аль-мукабала». Введено правило знаков: минус на минус даёт плюс; это правило используется при перемножении двух выражений с вычитаемыми членами. Всё это формулируется в общем виде, без отсылки к геометрическим истолкованиям.

Большая часть труда - это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика «Арифметики» - нахождение положительных рациональных решений неопределённых уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков.

Сначала Диофант исследует системы уравнений 2-го порядка от 2 неизвестных; он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней.

В X веке «Арифметика» была переведена на арабский язык, после чего математики стран ислама (Абу Камил и др.) продолжили некоторые исследования Диофанта. В Европе интерес к «Арифметике» возрос после того, как Рафаэль Бомбелли обнаружил это сочинение в Ватиканской библиотеке и опубликовал 143 задачи из него в своей «Алгебре» (1572). В 1621 году появился классический, подробно прокомментированный латинский перевод «Арифметики», выполненный Баше де Мезириаком. Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма; послужили отправной точкой в исследованиях Гаусса и Эйлера. Впрочем, в Новое время неопределённые уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант.

В XX веке под именем Диофанта обнаружен арабский текст еще 4 книг «Арифметики». Часть историков математики проанализировав этот текст, выдвинули гипотезу, что их автором был не Диофант, а хорошо разбиравшийся в методах Диофанта комментатор, вероятнее всего - Гипатия.

Трактат Диофанта «О многоугольных числах» (Περ? πολυγ?νων ?ριθμ?ν) сохранился не полностью; в сохранившейся части методами геометрической алгебры выводится ряд вспомогательных теорем.

Из сочинений Диофанта «Об измерении поверхностей» (?πιπεδομετρικ?) и «Об умножении» (Περ? πολλαπλασιασμο?) также сохранились лишь отрывки.

Книга Диофанта «Поризмы» известна только по нескольким теоремам, используемым в Арифметике.

Сегодня уравнение вида

где P - целочисленная функция (например, полином с целыми коэффициентами), а переменные принимают целые значения, называются в честь древнегреческого математика - диофантовыми.

Наверное, самым известным диофантовым уравнением является

Его решения - пифагоровы тройки: (3; 4; 5), (6; 8; 10), (5; 12; 13), (12; 35; 37)…

Доказательство неразрешимости в целых числах диофантового уравнения

при (Великая теорема Ферма) было закончено английским математиком Эндрю Уайлсом в 1994 году.

Ещё один пример диофантового уравнеия - уравнение Пелля


где параметр n не является точным квадратом.

Десятая проблема Гильберта - одна из 23 задач, которые Давид Гильберт предложил 8 августа 1900 года на II Международном конгрессе математиков. В докладе Гильберта постановка десятой задачи самая короткая из всех:

Пусть задано диофантово уравнение с произвольными неизвестными и целыми рациональными числовыми коэффициентами. Указать способ, при помощи которого возможно после конечного числа операций установить, разрешимо ли это уравнение в целых рациональных числах.

Доказательство алгоритмической неразрешимости этой задачи заняло около двадцати лет и было завершено Юрием Матиясевичем в 1970 году.

Во многом благодаря деятельности Паппа Александрийского (III век) до нас дошли сведения об античных учёных и их трудах. После Аполлония (со II века до н. э.) в античной науке начался спад. Новых глубоких идей не появляется. В 146 году до н. э. Рим захватывает Грецию, а в 31 году до н. э. - Александрию. На фоне общего застоя и упадка резко выделяется гигантская фигура Диофанта Александрийского - последнего из великих античных математиков, «отца алгебры».

Имя Диофанта носят следующие математические объекты:

  • диофантов анализ
  • диофантовы приближения
  • диофантовы уравнения

Биография

Латинский перевод Арифметики (1621)

О подробностях его жизни практически ничего не известно. С одной стороны, Диофант цитирует Гипсикла (II век до н. э.); с другой стороны, о Диофанте пишет Теон Александрийский (около 350 года н. э.), - откуда можно сделать вывод, что его жизнь протекала в границах этого периода. Возможное уточнение времени жизни Диофанта основано на том, что его Арифметика посвящена «достопочтеннейшему Дионисию». Полагают, что этот Дионисий - не кто иной, как епископ Дионисий Александрийский , живший в середине III в. н. э.

Арифметика Диофанта

Основное произведение Диофанта - Арифметика в 13 книгах. К сожалению, сохранились только 6 первых книг из 13.

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» (ἀριθμός ) и обозначает буквой ς , квадрат неизвестной - символом (сокращение от δύναμις - «степень»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней. Знака сложения у Диофанта нет: он просто пишет рядом положительные члены, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент. Вычитаемые члены также записываются рядом, а перед всей их группой ставится специальный знак в виде перевёрнутой буквы Ψ. Знак равенства обозначается двумя буквами ἴσ (сокращение от ἴσος - «равный»). Сформулированы правило приведения подобных членов и правило прибавления или вычитания к обеим частям уравнения одного и того же числа или выражения: то, что потом у ал-Хорезми стало называться «алгеброй и алмукабалой». Введено правило знаков: минус на минус даёт плюс; это правило используется при перемножении двух выражений с вычитаемыми членами. Всё это формулируется в общем виде, без отсылки к геометрическим истолкованиям.

Бо́льшая часть труда - это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики - нахождение положительных рациональных решений неопределённых уравнений . Рациональные числа трактуются Диофантом так же, как и натуральные , что не типично для античных математиков.

Сначала Диофант исследует системы уравнений 2-го порядка от 2 неизвестных; он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней.

В X веке Арифметика была переведена на арабский язык, после чего математики стран ислама (Абу Камил и др.) продолжили некоторые исследования Диофанта. В Европе интерес к Арифметике возрос после того, как Рафаэль Бомбелли обнаружил это сочинение в Ватиканской библиотеке и опубликовал 143 задачи из него в своей Алгебре (). В 1621 году появился классический, подробно прокомментированный латинский перевод Арифметики , выполненный Баше де Мезириаком. Методы Диофанта оказали огромное влияние на Франсуа Виета и Пьера Ферма ; впрочем, в Новое время неопределённые уравнения обычно решаются в целых числах, а не в рациональных, как это делал Диофант.

В XX веке под именем Диофанта обнаружен арабский текст еще 4 книг Арифметики . И. Г. Башмакова и Е. И. Славутин, проанализировав этот текст, выдвинули гипотезу, что их автором был не Диофант, а хорошо разбиравшийся в методах Диофанта комментатор, вероятнее всего - Гипатия .

Другие сочинения Диофанта

Трактат Диофанта О многоугольных числах (Περὶ πολυγώνων ἀριθμῶν ) сохранился не полностью; в сохранившейся части методами геометрической алгебры выводится ряд вспомогательных теорем.

Из сочинений Диофанта Об измерении поверхностей (ἐπιπεδομετρικά ) и Об умножении (Περὶ πολλαπλασιασμοῦ ) также сохранились лишь отрывки.

Книга Диофанта Поризмы известна только по нескольким теоремам, используемым в Арифметике .

Литература

Категории:

  • Древнегреческие математики
  • Математики Древнего Рима
  • Персоналии по алфавиту
  • Математики по алфавиту
  • Математики III века
  • Математики в теории чисел

Wikimedia Foundation . 2010 .

Смотреть что такое "Диофант Александрийский" в других словарях:

    - (ок. 3 в.) древнегреческий математик. В основном труде Арифметика (сохранились 6 книг из 13) дал решение задач, приводящихся к т. н. диофантовым уравнениям, и впервые ввел буквенную символику в алгебру … Большой Энциклопедический словарь

    - (около III в.), древнегреческий математик. В основном труде «Арифметика» (сохранились 6 книг из 13) дал решение задач, приводящихся к так называемым диофантовым уравнениям, и впервые ввёл буквенную символику в алгебру. * * * ДИОФАНТ… … Энциклопедический словарь

    - (вероятно, ок. 250 н.э., хотя возможна и более ранняя дата), древнегреческий математик, работавший в Александрии, автор трактата Арифметика в 13 книгах (дошли 6), посвященного главным образом исследованию неопределенных уравнений (т.н.… … Энциклопедия Кольера

    Диофант: Диофант (полководец) (II век до н. э.). Диофант Александрийский (III век н. э.) древнегреческий математик … Википедия

    Диофант - Александрийский (греч. Diophantos), ок. 250, др. греч. математик. В своем осн. труде «Арифметика» (б. ч. сохранившемся) использовал вычислительные методы египтян и вавилонян. Исследовал определ. и неопредел, задачи (особенно линейные и… … Словарь античности

    - (род. 325 г. ум. 409 г. по Р. Хр.) знаменитый александрийский математик. О жизни его нет почти никаких сведений; даже даты его рождения и смерти не вполне достоверны. Д. прожил 84 года, как это видно из эпитафии, составленной в виде следующей… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Диофант - ДИОФÁНТ Александрийский (ок. 3 в.), др. греч. математик. В осн. тр. Арифметика (сохранились 6 кн. из 13) дал решение задач, приводящихся к т. н. диофантовым ур ниям, и впервые ввёл буквенную символику в алгебру … Биографический словарь

Пусть первое число (I) будет s. Чтобы квадрат его *при прибавлении второго числа дал квадрат, второе число должно быть 2s + 1, так как в таком случае вы-полняется требование задачи: квадрат первого числа. сложенный со вторым, дает

s2 + 2s + 1, то есть полный квадрат (s + 1)2.

Квадрат второго числа, сложенный с первым, должен также дать квадрат, то есть число (2s + I) 2 + s, равное

4s 2 + 5s + 1 == t 2

Положим, что t = 2s -- 2; тогда t 2 = 4s 2 -- 8s + 4. Это выражение должно равняться 4s 2 + 5s + 1. Итак, должно быть:

4s 2 -- 8s + 4 == 4s 2 + 5s + l откуда s=

Значит, задаче удовлетворяют числа:

Проверка;

Почему Диофант делает предположение, что t==2s--2, он не объясняет. Во всех своих задачах (в дошедших до нас шести книгах его их 189) он делает то или другое предположение, не давая никакого обоснования.

В «Арифметике» 189 задач, каждая снабжена одним или несколькими решениями. Задачи ставятся в общем виде, затем берутся конкретные значения входящих в нее ве-личин и даются решения.

Задачи книги I в большинстве определенные. В ней имеются и такие, которые решаются с помощью систем двух уравнений с двумя неизвестными, эквивалентных квадратному уравнению. Для его разрешимости Диофант выдвигает условие, чтобы дискриминант был полным квадратом. Так, задача 30-- найти таких два числа, чтобы их разность и произведение были заданными числами,-- приводится к системе

х -- у = а, х = b.

Диофант выдвигает «условие формирования»: требуется, чтобы учетверенное произведение чисел, сложенное с квад-ратом разности их, было квадратом, т. е.

4b + а 2 = с 2 .

В книге II решаются задачи, связанные с неопределен-ными уравнениями и системами таких уравнений с 2, 3, 4, 5, 6 неизвестными степени не выше второй.

Диофант применяет различные приемы. Пусть необхо-димо решить неопределенное уравнение второй степени с двумя неизвестными f 2 (х, у) ==0. Если у него есть ра-циональное решение (x 0 , y 0 ), то Диофант вводит подста-новку

в которой k рационально. После этого основное уравнение преобразуется в квадратное относительно t, у которого свободный член f 2 (x 0 , у 0 ) = 0. Из уравнения получается t 1 == 0 (это значение Диофант отбрасывает), t 2 -- рацио-нальное число. Тогда подстановка дает рациональные х и у.

В случае, когда задача приводилась к уравнению

у 2 = ax 2 + bx + с, очевидно рациональное решение

x 0 = О,y 0 =±C . Подстановка Диофанта выглядит так:

y = kt ± c

Другим методом при решении задач книги II Диофант пользовался, когда они приводили к уравнению у 2 == = a 2 x 2 + bx + с. Он делал подстановку

после чего х и у выражались рационально через параметр k:

Диофант, по существу, применял теорему, состоящую в том,; что если неопределенное уравнение имеет хотя бы одно рациональное решение, то таких решений будет бес-численное множество, причем значения х и у могут быть представлены в виде рациональных функций некоторого параметра»

В книге II есть задачи, решаемые с помощью «двойного неравенства», т. е. системы

сх + d == v 2 .

Диофант рассматривает случай а = с, но впоследствии пишет, что метод можно применить и при а : с = т 2 , Когда а == с, Диофант почленным вычитанием одного ра-венства из другого получает и 2 --и 2 = b -- d. Затем раз-ность b -- d раскладывается на множители b -- d = п1 и приравнивает и + v = I, и -- v = п, после чего нахо-дит

и = (I + п)/2, v = (I - n)/2, х - (l 2 + п 2 }/4a - {b + d)/2a.

Если задача сводится к системе из двух или трех урав-нений второй степени, то Диофант находит такие рацио-нальные выражения неизвестных через одно неизвестное и параметры, при которых все уравнения, кроме одного, обращаются в тождества. Из оставшегося уравнения он выражает основное неизвестное через параметры, а затем находит и другие неизвестные.

Методы, разработанные в книге II, Диофант применяет к более трудным задачам книги III, связанным с системами трех, четырех и большего числа уравнений степени не выше второй. Он, кроме того, до формального решения задач проводит исследования и находит условия, которым должны удовлетворять параметры, чтобы решения сущест-вовали.

В книге IV встречаются определенные и неопределен-ные уравнения третьей и более высоких степеней. Здесь дело обстоит значительно сложнее, потому что, вообще говоря, неизвестные невозможно выразить как рациональ-ные функции одного параметра. Но, как и раньше, если известны одна или две рациональные точки кубической кривой fз (х, у) == 0, то можно найти и другие точки. Диофант при решении задач книги IV применяет новые методы»

Книга V содержит наиболее сложные задачи; некоторые из них решаются с помощью уравнений третьей и четвер-той степеней от трех и более неизвестных. Есть и такие, в которых требуется разложить данное целое число на сум-му двух, трех или четырех квадратов, причем эти квадра-ты должны удовлетворить определенным неравенствам.,

При решении задач Диофант дважды рассматривает урав-нение Пелля ax 2 + 1 = у 2 .

Задачи книги VI касаются прямоугольных треуголь-ников с рациональными сторонами. К условию х 2 + у 2 == z 2 в них добавляются еще условия относительно площа-дей, периметров, сторон треугольников.

В книге VI доказывается, что если уравнение ax 2 + b == у 2 имеет хотя бы одно рациональное решение, то их будет бесчисленное множество. Для решения задач книги VI Диофант применяет все употребляемые им спо-собы.

Кстати, в одном из древних рукописных сборников задач в стихах жизнь Диофанта описывается в виде следующей алгебраиче-юй загадки, представляющей надгробную надпись на его могиле

Прах Диофанта гробница покоит; дивись ей--и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Задача-загадка сводится к составлению и решению уравнения:

откуда х = 84 = вот сколько лет жил Диофант.

Неопределённое уравнение x 2 + y 2 = z 2

Диофант Александрийский (др.-греч. ; лат. Diophantus) - древнегреческий математик, живший предположительно в III веке н. э. Нередко упоминается как «отец алгебры». Автор «Арифметики» - книги, посвящённой нахождению положительных рациональных решений неопределённых уравнений. В наше время под «диофантовыми уравнениями» обычно понимают уравнения с целыми коэффициентами, решения которых требуется найти среди целых чисел.

Диофант был первым греческим математиком, который рассматривал дроби наравне с другими числами. Диофант также первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде.

В честь Диофанта назван кратер на видимой стороне Луны.

Биография

О подробностях его жизни практически ничего не известно. С одной стороны, Диофант цитирует Гипсикла (II век до н. э.); с другой стороны, о Диофанте пишет Теон Александрийский (около 350 года н. э.), - откуда можно сделать вывод, что его жизнь протекала в границах этого периода. Возможное уточнение времени жизни Диофанта основано на том, что его Арифметика посвящена «достопочтеннейшему Дионисию». Полагают, что этот Дионисий - не кто иной, как епископ Дионисий Александрийский, живший в середине III в. н. э.

В Палатинской антологии содержится эпиграмма-задача:

Прах Диофанта гробница покоит; дивись ей - и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребёнком. И половину шестой встретил с пушком на щёках. Только минула седьмая, с подругой он обручился. С нею, пять лет проведя, сына дождался мудрец; Только полжизни отцовской возлюбленный сын его прожил. Отнят он был у отца ранней могилой своей. Дважды два года родитель оплакивал тяжкое горе, Тут и увидел предел жизни печальной своей. (Перевод С. П. Боброва)

Она эквивалентна решению следующего уравнения:

Это уравнение даёт x = 84 {\displaystyle x=84} , то есть возраст Диофанта получается равным 84 годам. Однако достоверность сведений не может быть подтверждена.

Арифметика Диофанта

Основное произведение Диофанта - Арифметика в 13 книгах. К сожалению, сохранились только 6 первых книг из 13.

Первая книга предварена обширным введением, в котором описаны используемые Диофантом обозначения. Неизвестную Диофант называет «числом» () и обозначает буквой, квадрат неизвестной - символом (сокращение от - «степень»), куб неизвестной - символом (сокращение от - «куб»). Предусмотрены специальные знаки для следующих степеней неизвестного, вплоть до шестой, называемой кубо-кубом, и для противоположных им степеней, вплоть до минус шестой.

Знака сложения у Диофанта нет: он просто пишет рядом положительные члены в порядке убывания степени, причём в каждом члене сначала записывается степень неизвестного, а затем численный коэффициент. Вычитаемые члены также записываются рядом, а перед всей их группой ставится специальный знак в виде перевёрнутой буквы. Знак равенства обозначается двумя буквами (сокращение от - «равный»).

Сформулированы правило приведения подобных членов и правило прибавления или вычитания к обеим частям уравнения одного и того же числа или выражения: то, что потом у ал-Хорезми стало называться «алгеброй и алмукабалой». Введено правило знаков: «минус на плюс даёт минус», «минус на минус даёт плюс»; это правило используется при перемножении двух выражений с вычитаемыми членами. Всё это формулируется в общем виде, без отсылки к геометрическим истолкованиям.

Большая часть труда - это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики - нахождение положительных рациональных решений неопределённых уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков.