Поляриметр настольного типа, закрытой конструкции, визуальный, с наклонной осью состоит из следующих узлов: головки анализатора с отчетным устройством и лупой, поляризационного устройства, основания в сборе и набора кювет. Общий вид поляриметра изображен на рис.6: 1 - втулка наблюдательной трубки, 2 - кюветное отделение, 3 - окуляр, 4 - ручка анализатора, 5 - шкала лимба, 6 - наглазник, 7 - лупа.

Рис. 6. Общий вид поляриметра

Принципиальная оптическая схема поляриметра приведена на рис. 7.

1-лампочка накаливания, 2-светофильтр, 3-конденсор, 4-поляризатор, 5-хроматическая фазовая пластинка, 6-защитное стекло, 7-покровные стекла кюветы (трубки), 8-трубка, 9-анализатор, 10-объектив, 11- окуляр, 12-лупы.

Свет от источника 1 проходит через желтый светофильтр 2. конденсор 3 и падает параллельным пучком на поляризатор 4. Поляризованный свет попадает на активное вещество, находящееся в кювете 8.

В поляриметре применен принцип уравнивания яркостей разделенного на части поля зрения. Разделение поля зрения осуществлено введением в оптическую схему поляриметра хроматической фазовой пластинки 5. Яркости полей сравнения уравнивают вблизи полного затемнения поля зрения. Плоскости поляризации поляризатора и анализатора составляют угол 86,5 0

Свет от лампы, пройдя через поляризатор одной частью пучка проходит через хроматическую фазовую пластинку, защитное стекло, кювету и анализатор, а другой частью пучка только через защитное стекло, кювету и анализатор. Вид поля зрения показан на рис.8. Уравнивание яркостей полей зрения производится путём вращения анализатора.

Если между анализатором и поляризатором ввести кювету с оптически активным веществом, то равенство яркостей полей зрения нарушается (рис.9). Оно может быть восстановлено поворотом анализатора на угол, равный ушу поворота плоскости поляризации оптически активным раствором (рис.10).

Следовательно, разностью двух отсчётов, соответствующих равенству двух яркостей полей сравнения с оптически активным раствором и без него, определяется угол вращения плоскости поляризации раствором.

Зная угол вращения плоскости поляризации в градусах (см формулу 7), можно определить концентрацию вещества в г/см 3:

Рис.8. Положение лимба и поле зрения при установке анализатора на равную яркость полей зрения в чувствительном положении при введенной кювете, наполненной дистиллированной водой (нулевое положение)

РИС.9. Положение лимба и поле зрения после ввода кюветы, наполненной раствором и вторичной установки окуляра на резкость) изображения линий раздела полей зрения

РИС.10. Положение лимба и поле зрения при установке анализатора на равную яркость полей сравнения в чувствительном ] положении с кюветой, наполненной раствором.

Отсчеты углов ф по шкале снимают следующим образом. Шкала поляриметра состоит из двух частей: подвижная шкала лимба (левая часть на рис. 8-10) и неподвижная шкала нониуса (правая часть). Цена деления шкалы лимба 0,5°, нониуса - 0,02°. Оцифровка нониуса "10" соответствует 0,10°; "20" - 0,20° и т.д. Определяют на сколько градусов повернута шкала лимба по отношению к "нулю" нониуса. Затем смотрят, какие два деления (одно на лимбе, другое на нониусе) совпадают и по совпадающему делению на нониусе отсчитывают сотые доли Градуса (принцип такой же, как и для штангенциркуля) Например, шкала лимба сдвинута на 3 деления относительно "нуля"" нониуса и совпадает 6-ое деление на нониусе с каким-то делением на лимбе. Тогда нам это дает:

3 деления * 0,5°= 1,5° + 6 делений * 0,02° = 0.12° Угол ф = 1 ,5° + 0,12° = 1,62°

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Включите поляриметр в сеть переменного тока.

2 Вращением втулки 1 (см рис.6) установите окуляр тек, чтобы видеть резкое изображение линии раздела полей сравнения как на рис 8

3 Откройте крышку кюветного отделения 2 и выньте кювету (трубку) Перед началом измерений трубку для растворов необходимо отчистить от всяких загрязнений. С этой целью ее промывают дистиллированной водой. Затем трубку заполните раствором или водой Заполнение трубки ведется до тех пор, пока на верхнем конце трубки не появится выпуклый мениск. Выпуклый мениск сдвигается в сторону при надвигании на него покровного стекла. Затем на покровное стекло наложите резиновую прокладку и наверните колпачок. После этого покровные стекла с наружной стороны тщательно протираются мягкой салфеткой.

В трубке не должно быть пузырьков воздуха. Если они имеются, то наклонами трубки их необходимо завести в утолщенную часть, чтобы они не мешали наблюдению.

4. Определите нулевое положение на лимбе (ф о). Для этого «полните трубку дистиллированной водой. Поместите ее в кюветное отделение. Поворотом анализатора установите зрительное поле на световое равновесие в чувствительном положении.

ПРИМЕЧАНИЕ. Вращением анализатора можно уравнивать яркости полей зрения при различных углах, но измерение следует проводить только при чувствительном положений анализатора, при котором незначительное вращение анализатора вызывает резкое нарушение равенства яркостей полей сравнения.

Снимите отсчет нулевого положения (ф о) по лимбу 5. При этом на основной шкале (левая шкала) отсчитываются целые и десятые доли градуса, а по нониусу (правая шкала) - десятые и сотые доли градуса. Цена деления нониуса 0,02°. Показаний ф о снимают не менее пяти раз и определяют среднее из них.

5. Определите угол вращения плоскости поляризаций раствором (ф i) Для этого заполните трубку раствором. Затем установите втулкой окуляр наблюдательной трубки на резкое изображение линии раздела попей сравнения. Плавным и медленным поворотом ручки анализатора установите равенство яркостей полей сравнения и снимите отсчет по шкале лимба ф i угол вращения плоскости помири >ации исследуемым раствором находится из выражении

ф i = ф i ’- ф 0 (10)

6. Подобные измерения провести для всех растворов с известной концентрацией и одного раствора с неизвестной концентрацией.

7. Построить график зависимости угла поворота плоскости поляризации от концентрации раствора ф= f(C).

8. Пользуясь графиком, определите постоянную удельного вращения [у].

9. Зная угол поворота ф x плоскости поляризации раствором неизвестной концентрации, определите по графику концентрацию сахара в растворе.

10. Все экспериментальные и расчетные данные занести в таблицу:

Раствор № изм С, г/см 3 Ф 0 град ф i ’ град ф i град [у]. (град см 3)/(г дм) С х %
сред

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какой свет называется плоско поляризованным?

2. Какие способы поляризации естественного света Вы знаете?

3. Чем отличаются обыкновенный и необыкновенный лучи?

4. 4.Как соотносятся интенсивности поляризованного света, падающего на анализатор, и света, прошедшего через него?

5. Какова зависимость угла поворота плоскости поляризации от концентрации и толщины слоя?

в. Чем объясняется вращение плоскости поляризации с точки зрения теории Френеля?

7. 7.Какова принципиальная схема поляриметра?

8. В чем состоит смысл полутеневого метода, используемого в поляриметре?

Литература

1. Ландсберг Г.С. Оптика.- M.: Наука, 1976.

2. Савельев И В. Курс общей физики. - М.: Наука, т.2,1978.

3. Борисенко В.Е, Дерябин В.М. Оптика. Основы атомной и ядерной физики Тюмень 1968

4. Физпрактикум "Электричество и оптика" под ред. проф. В.И. Ивероновой М- Наука, 1968.

5. Описание конструкции и методики работы на поляриметре СМ-2.

(дисперсию измеряют спектрополяриметрами). В поляриметрах, построенных по схеме полутеневых приборов (рис. 1 , 2 ), измерение сводится к визуальному уравниванию яркостей двух половин поля зрения прибора и последующему считыванию показаний по шкале вращений, снабженной нониусом. Эту методику, несмотря на её принципиальную простоту, отличает достаточно высокая для многих целей точность измерений, что обусловило широкое применение полутеневых поляриметров. Однако более распространены автоматические поляриметры с фотоэлектрической регистрацией, в которых та же задача сопоставления двух интенсивностей решается поляризационной модуляцией светового потока (см. Модуляция света) и выделением на выходе приёмника света сигнала основной частоты (рис. 3 ). Современные автоматические поляриметры позволяют измерять углы с точностью ~ 0,0002°.

2) Прибор для определения степени р частично поляризованного света (см. света). Простейший такой поляриметр - полутеневой поляриметр Корню, предназначенный для измерения степени линейной . Основными элементами этого поляриметра служат призма Волластона (см. Поляризационные призмы) и анализатор. Поворотом анализатора (шкала поворота проградуирована на значения р) уравнивают яркости полей, освещаемых пучками, которые при выходе из призмы имеют неодинаковую интенсивность. Фотоэлектрический поляриметр в наиболее простом случае измерения степени линейной состоит из вращающегося вокруг оптической оси поляриметра анализатора и фотоприёмника. Отношение амплитуд переменной составляющей тока приёмника к постоянной непосредственно даёт р. Поставив перед поляриметром фазовую пластинку четверть длины волны (см. Компенсатор оптический, Поляризационные приборы), можно использовать его для измерения степени круговой (циркулярной) .

Поляриметры широко и эффективно применяются в первую очередь в для изучения структуры и свойств , а также для других научных исследований и решения технических задач. В частности, измерения степени циркулярной излучения космических объектов позволяют обнаруживать сильные магнитные поля во Вселенной.

Лит.: Шишловский А. А., Прикладная физическая оптика, М., 1961; см. также лит. к ст. света, .

В. С. Запасский.


Рис. 3. Схемы автоматических поляриметров с фотоэлектрической регистрацией, основанные на модуляции света по плоскости (схема б отличается от а лишь наличием магнитооптического модулятора М, поэтому её элементы не снабжены цифровыми обозначениями). 1 - источник света; 2 - конденсор; 3 - поляризатор-модулятор света по плоскости ; 4 - ячейка (кювета) с измеряемым оптически-активным ; 5 - анализатор; 6 - фотоприёмник; 7 - усилитель; РД - реверсивный электродвигатель. Промодулированный по интенсивности (после прохождения через анализатор) свет преобразуется фотоприёмником в переменное напряжение V 2 , усиливаемое до V" 2 которое подаётся на одну из двух обмоток двухфазного РД, кинематически связанного с анализатором и отсчётным устройством. На другую обмотку подаётся синусоидальное (модулирующее) напряжение V 1 ; его частота равна частоте первой гармоники модулируемого света. РД автоматически поворачивает анализатор на угол, равный измеряемому вращению. Результат измерений не зависит от изменений интенсивности света, амплитуды угловых колебаний плоскости его и коэффициента усиления в 7, что позволяет проводить измерения для сред с большим поглощением и не требует стабилизации усиления.



Рис. 2. Полутеневые поляризаторы. Плоскости двух их половин P 1 и P 2 составляют между собой малый угол 2a . Поэтому, если плоскость анализатора АА перпендикулярна биссектрисе 2a (а), обе половины I и II поля зрения имеют одинаковую освещённость, т. е. не полностью погашены (полутень, откуда название). При малейшем повороте анализатора относительная освещённость I и II резко меняется (б и в). Примеры конструкций полутеневых поляризаторов: г - схема Липпиха; P 1 и P 2 - две поляризационные призмы, одна из которых закрывает половину поля зрения, А - анализатор; д - схема Лорана; за поляризационной призмой Р устанавливают фазовую пластинку М в 1 / 2 длины волны, главная плоскость которой составляет угол a с плоскостью Р; D - диафрагма, ограничивающая поле зрения.



Рис. 1. Принципиальная схема полутеневого поляриметра: 1 - источник света; 2 - конденсор; 3-4 - полутеневой поляризатор; 5 - трубка с измеряемым оптически-активным ; 6 - анализатор с отсчётным устройством; 7 - зрительная труба; 8 - окуляр отсчётного устройства (например, микроскопа-микрометра).

Поляризованный свет отличается от обычного тем, что он колеблется только в одной плоскости, в то время как обычный свет колеблется во всех плоскостях пространства.

Поляризованный свет можно получить, если пропустить луч обычного света через призму Николя, кристаллическая решетка которой задерживает колебания света во всех плоскостях, кроме одной, через которую он проникает на другую сторону кристалла в виде поляризованного света. Призму Николя, служащую для получения поляризованного света, называют поляризатором.

Если на пути поляризованного света поставить вторую призму Николя, плоскость поляризации которой совпадаете первой призмой, то поляризованный свет свободно пройдет через вторую призму и осветит пространство позади нее. В случае смещения второй призмы так, что нарушится параллельность плоскостей поляризации, поляризованный свет не сможет полностью пройти через вторую призму и пространство позади нее будет частично или полностью затемнено (в зависимости от степени смещения). Вторую призму, находящуюся на пути поляризованного света, называют анализатором.

Если между поляризатором и анализатором, установленными так, что поляризованный свет проходит через анализатор, поместить слой жидкости, не содержащий оптически активных веществ, например дистиллированную воду, то плоскость колебания поляризованного света не отклонится и луч пройдет через анализатор так же, как в случае, когда слой жидкости отсутствовал.

Плоскость поляризованного света сдвинется на определенную величину, если при первоначальном положении обеих призм между ними поместить слой жидкости, содержащей оптически активное вещество, например глюкозу. В данном конкретном случае сдвиг произойдет на угол а и свет не сможет пройти через анализатор.

Для того, чтобы свет прошел через анализатор, последний необходимо повернуть на тот же угол а так, чтобы плоскость поляризованного света снова совпадала с плоскостью анализатора. Поставив перед анализатором градуированную в градусах шкалу, можно измерить угол отклонения, а вместе с тем и угол вращения плоскости поляризованного света а.

Аппараты, построенные на описанном выше принципе, называются поляриметрами и с их помощью определяется угол вращения поляризованного света. Схематическое устройство простейшего поляриметра приведено на рис. 95, а, б.

Рис. 95.
а, б - схематическое изображение поляриметра. Пояснения в тексте.

Зеркало (1) служит для направления пучка света в аппарат, а оранжевый светофильтр (2), установленный перед поляризатором, пропускает только желтый свет, так как поляриметрию предпочтительно проводить при желтом, а еще лучше при монохроматическом свете натриевой лампы. Поляризатор (3) служит для поляризации пучка света, а трубка (4) предназначена для заполнения ее исследуемой жидкостью. Анализатор (5) и связанный с ним диск поворота (6) служат для вращения на соответствующий угол. Окуляр поляриметра (7) необходим для рассмотрения поля зрения, а шкала с нониусом (8) и окуляр (9) нужны для регистрации величины угла вращения.

Поле зрения поляриметра обычно разделено на две равные части (рис. 96, а). Когда в трубке находится оптически неактивная жидкость, то обе половины зрительного поля освещены одинаково, так как анализатор не задерживает света. При наличии в трубке оптически активного раствора одна из половин зрительного поля затемняется, так как плоскость поляризованного света отклоняется и свет не полностью проходит через анализатор. Поворотом диска, к которому прикреплен анализатор, последний поворачивают на угол а, соответствующий повороту плоскости поляризованного света, при этом обе половины зрительного поля освещаются одинаково. На шкале прибора определяется величина угла.

В некоторых приборах поле зрения разделено не на две, а на три части - центральную полосу и два боковых сегмента по сторонам (рис. 96, б). Эти приборы удобнее, чем поляриметры с двумя частями поля зрения. При оптически неактивной жидкости все три части поля зрения освещены одинаково. При оптически активной жидкости, находящейся в трубке, плоскость поляризованного света отклоняется и центральная полоска зрительного поля затемняется.

Диск с анализатором вращают до тех пор, пока все три части поля зрения примут одинаковую освещенность, после чего отмечают угол поворота.

Для оптически активного вещества величина угла вращения поляризованного света зависит от ряда факторов:
1) от характера веществ, каждое из которых имеет свой характерный угол вращения, который называют «удельным вращением» и обозначают ;
2) от концентрации оптически активного вещества;
3) от длины трубки, в которой помещена исследуемая жидкость (толщина слоя).

Зависимость между этими величинами может быть выражена следующим уравнением:

где 1) -удельное вращение вещества;
2) l - толщина слоя;
3) С - концентрация оптически активного вещества. Таким образом, зная удельное вращение вещества и длину
трубки, можно определить его концентрацию в растворе. Длина трубки в различных аппаратах может быть различной. Эта величина указывается в инструкциях по пользованию.
обозначает специфический угол вращения (удельное
вращение), т. е. угол вращения поляризованного света при концентрации одного грамма вещества в 1 мл, при длине трубки в 10 см, температуре 20°, при желтом натриевом свете (D - линия спектра).

Поляриметр П-161 в настоящее время не выпускается, но применяется во многих лабораториях. Он весьма прост в употреблении и предназначен для определения сахара в моче. Прибор состоит из трех основных частей: стойки, трубки поляриметра и трубки-кюветы.

Трубка-кювета изготовлена из керамики, на которую навинчивают колпачки с резиновыми прокладками и защитными стеклами, чтобы не вытекала исследуемая жидкость. Изготовленная из непрозрачной керамики кювета позволяет устанавливать ее в открытое ложе поляриметрической трубки. Керамическая трубка-кювета небьющаяся, кислотоустойчивая, стенки ее обладают меньшей отражательной способностью, чем стекло. Длина керамиковой трубки-кюветы - 94,7 мм, рассчитана таким образом, что удвоенное число отсчета дает непосредственное содержание сахара в 100 мл мочи или соответственно содержание сахара в процентах.

Более сложным прибором является круговой поляриметр типа СМ , позволяющий определять угол вращения в пределах ±360°. Луч света от лампы накаливания через отверстие в кожухе осветителя проходит через светофильтр, осветительную линзу-конденсор, дающую пучок параллельных лучей, и далее через поляризатор, помещенный между двумя защитными стеклами. Поляризованный свет проходит через диафрагму с кварцевой пластинкой, расположенной так, что через нее проходят лучи только средней части пучка. Пластинка отклоняет плоскость поляризации света, проходящего через поляризатор на 5-7°.

Поворотом анализатора регулируется освещенность фотометрического поля, которое в поляриметре СМ разделено на три части (рис. 96, б). Затемненность полей определяют через зрительную трубу и фиксируют либо в отсутствии трубки с исследуемым раствором, либо с трубкой, наполненной водой.


Рис. 96. Поле зрения поляриметра.
а - с двумя полями; б - с центральными и боковыми сегментами.

Сложным и высокоточным производительным прибором является поляриметр, выпускаемый фирмой «Perkin-Elmer» .

Поляриметр этой фирмы модели 241 МС имеет монохроматор. Монохроматический свет проходит через поляризатор, ячейку с образцом и анализатор и попадает на фотоумножитель. Прибор работает на принципе оптического нулевого отсчета. Поляризатор и анализатор установлены в нулевой позиции на вертикальной оптической оси. Когда оптически активный образец устанавливается в пучок света, анализатор поворачивается с помощью серво-системы до тех пор, пока опять не устанавливается оптический нуль. Угол вращения измеряется по шкале и результат указывается на цифровом табло.

Измерение угла вращения исследуемых веществ может проводиться в лучах ртутной лампы высокого давления, а также при необходимости в свете натриевой лампы с длиной волны 589 нм, дейтериевой лампы с длиной волн 250-420 нм или йодно-кварцевой лампы (350-650 нм). Три последних лампы смонтированы в отдельном блоке, который легко устанавливается в прибор и позволяет быстро осуществлять переключение необходимого источника света.

Для исследования малых объемов растворов имеется специальная микроячейка на 0,2 мл. Точность прибора: ±0,002° для ротационных величин <1°.

Габариты прибора: длина - 950 мм, ширина - 280 мм, высота - 350 мм. Масса - около 50 кг.

Страница 8

Рисунок 2.9 - Опическая схема поляриметра СМ-3 (пояснения в тексте)

Осветитель 1 (лампа накаливания или натриевая лампа ДНаО140) устанавливается в фокальной плоскости оптической системы 8. В конструкции узла осветителя предусмотрены подвижки для установки нити накала лампы на оптической оси. При работе с лампой накаливания перед оптической системой 3 вводится желтый светофильтр 2. Параллельный монохроматический пучок лучей, выходящий из системы 3, проходит через поляризатор 4 (поляроид, заклеенный между двумя стеклами), кварцевую пластинку 5, создающую совместно с поляроидом полутеневую картину с тройным полем зрения, и кварцевую кювету 6 с исследуемым раствором. Обычно длина кюветы выбирается такой, чтобы концентрации 10-3 кг/см3 соответствовал угол поворота плоскости поляризации j=1°. После кюветы расположен анализатор 7, аналогичный поляризатору 4, и телескопическая система, состоящая из объектива 10 и окуляра 11, через который ведется наблюдение при уравнивании освещенностей частей поля зрения. Отсчет осуществляется по градусной шкале 8 неподвижного лимба (с оцифровкой от 0° до 360°) с помощью двух диаметрально противоположных нониусов 9 (шкалы нониусов имеют по 20 делений; цена одного деления 0,05°). Из показаний двух нониусов берут среднее значение (для учета эксцентриситета лимба). Отсчет снимается при наблюдении лимба и нониуса через лупы 12.

Достаточно просто устроен полярископ-поляриметр ПКС-56 (рисунок 2.10). Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), четвертьволновой пластинки 5, анализатора 6 и светофильтра 7 (максимум пропускания при 0.54 мкм). Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0°, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота Db анализатора.

Рисунок 2.10 - Опическая схема полярископа-поляриметра ПКС-56

(пояснения в тексте)

Определив Db, можно определить no-ne из соотношения

где l - толщина образца. При l=10 мм погрешность измерения no-ne составляет ±3×10-7. С увеличением l погрешность уменьшается.

Несколько более сложную схему имеет малогабаритный поляриметр ИГ-86 (рисунок 2.11), предназначенный для визуального исследования напряженного состояния изделий с помощью оптически чувствительных покрытий. Он позволяет наблюдать интерференционную картину в условиях плоской и круговой поляризации и измерять оптическую разность хода как методом сопоставления цветов, так и компенсационным методом.

Рисунок 2.11 - Опическая схема малогабаритныого поляриметра ИГ-86

(пояснения в тексте)

Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 и попадает в зрительную трубу (сменное увеличение 2 и 10´) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы. Предел измерения оптической разности хода - от 0 до 5 интерференционных порядков. Погрешность измерения - 0.05 интерференционных порядков.

Схема типичного фотоэлектрического модуляционного поляриметра, позволяющего измерять меняющуюся во времени разность фаз о- и е-лучей, показана на рисунке 2.12.

Рисунок 2.12 - Опическая схема фотоэлектрическиого модуляционного поляриметра

(пояснения в тексте)

Лучистый поток источника света 1 сверхвысокого давления проходит через иитерференционный светофильтр 2, поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в о- и е-лучах составляют углы p/4 с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластину 5, изготовленную из одноосного кристалла (например, кристалла ADP - дигидрофосфата аммония NH4H2PO4, вырезанную так, что ее плоскости перпендикулярны оптической оси) позволяющего реализовать эффект Поккельса и обеспечить модуляцию проходящего светового потока. При приложении к пластине 5 переменного электрического напряжения в направлении, параллельном оси лучистого потока и оптической оси кристалла, последний становится двухосным. Новые оптические оси образуют симметричные углы p/4 с прежним направлением оси, а проходящий через нее свет претерпевает двойное лучепреломление. Возникающая при этом разность фаз пропорциональна напряжению электрического поля и не зависит от толщины пластины 5. В связи с возникающей переменной разностью фаз эллиптически поляризованный свет периодически меняет форму эллипса поляризации. В результате на выходе компенсатора 6 плоскость линейно поляризованного света колеблется относительно среднего положения. После анализатора 11 модулированный поток света попадает на фотодетектор 10, сигнал с которого с основной частотой, соответствующей первой гармонике, поступает в усилитель 8 и приводит в действие сервомотор 9, поворачивающий анализатор 1l до тех пор, пока первая гармоника присутствует в сигнале. Остановка соответствует положению анализатора, при котором на фотодетектор падает минимальный поток излучения. Регистрирующее устройство 7 (например, самописец) фиксирует углы поворота анализатора, причем измеряемая разность фаз равна удвоенному углу поворота анализатора.

Существует несколько различных типов поляриметров, отличающихся, главным образом, природой источника света и точностью отсчитываемых показаний. Опишем устройство прибора на примере кругового поляриметра.

Монохроматический свет от источника (натриевой лампы), расположенного в отделении (1) проходит через поляризатор (2), становясь при этом поляризованным. Далее луч поляризованного света попадает в кюветное отделение (3), где располагается кювета (4) с исследуемым раствором. Если в кювете имеется оптически активное вещество, плоскость поляризации света поворачивается вправо или влево в зависимости от природы вещества. Вследствие поворота плоскости поляризации луч света может пройти через анализатор (5) и попасть в окуляр (6) только в том случае, если анализатор повернут на тот же угол и в том же направлении. Поворот анализатора осуществляется регулятором (7).


Отсчет показаний производится с помощью шкал, расположенных по обе стороны от окуляра в окошках (8). Включение и выключение прибора осуществляется тумблером (9).

Измерения с помощью поляриметра проводятся следующим образом:

1. После включения прибор прогревается около 10 мин до появления яркого желтого света в вентиляционных отверстиях отделения (1).

2. Кювета (4) заполняется без пузырьков воздуха исследуемым раствором и помещается в кюветное отделение (3), крышка кюветного отделения закрывается.

3. Вращением регулятора (10) устанавливается резкость изображения в окуляре (6). При этом на черном фоне должен быть виден желтый кружок, разделенный вертикальной линией; одна из половин кружка может быть более темной, чем другая.

4. Поворотом регулятора (7) достигается такое положение, при котором обе половины освещенного кружка приобретают одинаковую яркость и вертикальная граница полукружий исчезает.

5. Угол поворота (“вращения”) плоскости поляризации светового луча определяется с помощью шкал (8). При прецизионных измерениях угол отсчитывается дважды (по левой и по правой шкале) с вычислением среднего арифметического; при учебных измерениях можно ограничиться одним отсчетом по левой шкале.

Принцип отсчета показаний приведен на рисунке. Деления подвижной шкалы нанесены через каждые 0,5 градуса. Неподвижный нониус позволяет определить угол с точностью 0,02 о. Сначала определяется число градусов, отделяющих нуль нониуса от нуля подвижной шкалы. Затем среди делений нониуса находится такое, которое сливается в одну линию с каким-либо делением подвижной шкалы. Это деление нониуса дает десятые и сотые доли градуса. Оба показания складывают. Так, изображение на рисунке соответствует углу 3,5 + 0,06 = 3,56 о. Вставить рисунок.