В палочках сетчатки человека содер­жится пигмент родопсин, или зрительный пурпур, максимум спект­ра поглощения которого находится в области 500 нанометров (нм). В наружных сегментах трех типов колбочек (сине-, зелено- и красно-чувствительных) содержится три типа зрительных пиг­ментов, максимумы спектров поглощения которых находятся в синей (420 нм), зеленой (531 нм) и красной (558 нм) частях спектра. Красный колбочковый пигмент получил название «йодопсин» (поглощает желтую часть спектра). Молекула зрительного пигмента сравнительно небольшая, состоит из боль­шей белковой части (опсина) и меньшей хромофорной (ретиналь, или альдегид витамина А). Ретиналь может находиться в различных пространственных конфигурациях, т. е. изомерных формах, но только одна из них - 11-цис-изомер ретиналя выступает в качест­ве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды, поэтому недостаток их приводит к дефициту витамина А и, как следствие, к недостаточному ресинтезу родопсина, что в свою очередь является причиной нарушения сумеречного зрения, или «куриной слепоты».

Молекулярная физиология фоторецепции .

А Б

В темноте ретиналь в виде цис-формы (рис. 14 А) . На свету меняет свою конфигурацию и превращается в транс-форму (рис. 14 Б) . Его боковая цепь выпрямляется. Связь ретиналя и белка прерывается. Разложение пигмента сопровождается его выцветанием, при этом высвобождается энергия, которая создает ПД, который через синапс запускает импульс в нейронах. Обратное превращение пигмента родопсина происходит при затемнении глаз. Для образования ретиналя необходим цис-изомер витамина А. Если витамин А в организме отсутствует, развивается куриная слепота (человек не видит в сумерках).

Опсин при воздействии кванта света тоже меняется. Происходит перемещение заряда на белке. Этот процесс ведет к возникновению раннего рецепторного потенциала (РРП). Вслед за РРП развивается поздний РРП, который отражает возбуждение нервного членика рецептора – внутреннего сегмента. ПРП через синапс запускает импульс в нейронах. Структура йодопсина близка к родопсину (тоже состоит из ретиналя с белком опсином).



НЕЙРОНЫ СЕТЧАТКИ

Фоторецепторы сетчатки синаптически связаны с биполярными нейронами. При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны бипо­лярного нейрона. От него нервный сигнал передается на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный ней­рон, так и от него на ганглиозную клетку происходит безымпульс­ным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зритель­ный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганг-лиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецеп­тивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространствен­ное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карли­ковой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространст­венное разрешение, но резко уменьшает световую чувствитель­ность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки ко­торых распространяются сигналы, меняющие синаптическую пе­редачу между фоторецепторами и биполярными клетками (гори­зонтальные клетки) и между биполярными и ганглиозными клет­ками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками (рис. 15) .

Кроме афферентных волокон, в зрительном нерве есть и цент­робежные, или эфферентные, нервные волокна, приносящие к сет­чатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчат­ки, регулируя проведение возбуждения между ними.

29. СВЕТОВАЯ И ТЕМНОВАЯ АДАПТАЦИЯ

При переходе от темноты к свету насту­пает временное ослепление, а затем чувствительность глаза посте­пенно снижается. Это приспособление зрительной сенсорной сис­темы к условиям яркой освещенности называется световой адапта­цией . Обратное явление (темповая адаптация) наблюдается при переходе из светлого помещения в почти не освещенное. В первое время человек почти ничего не видит из-за пониженной возбуди­мости фоторецепторов и зрительных нейронов. Постепенно начи­нают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 мин она увели­чивается в десятки раз, а затем в течение часа - в десятки тысяч раз. Важную роль в этом процессе играет восстановление зри­тельных пигментов. Пигменты колбочек в темноте восстанавли­ваются быстрее родопсина палочек, поэтому в первые минуты пре­бывания в темноте адаптация обусловлена процессами в колбоч­ках. Этот первый период адаптации не приводит к большим изме­нениям чувствительности глаза, так как абсолютная чувствитель­ность колбочкового аппарата невелика.

Следующий период адаптации обусловлен восстановлением родопсина палочек. Этот период завершается только к концу пер­вого часа пребывания в темноте. Восстановление родопсина со­провождается резким (в 100 000-200 000 раз) повышением чув­ствительности палочек к свету. В связи с максимальной чувстви­тельностью в темноте только палочек слабо освещенный предмет виден лишь периферическим зрением.

Существенную роль в адаптации, помимо зрительных пигмен­тов, играет изменение (переключение) связей между элементами сетчатки. В темноте площадь возбудительного центра рецептив­ного поля ганглиозной клетки увеличивается вследствие ослаб­ления или снятия горизонтального торможения. При этом увели­чивается конвергенция фоторецепторов на биполярные нейроны и биполярных нейронов на ганглиозную клетку. Вследствие этого за счет пространственной суммации на периферии сетчатки свето­вая чувствительность в темноте возрастает.

Световая чувствительность глаза зависит и от влияний ЦНС. Раздражение некоторых участков ретикулярной формации ствола мозга повышает частоту импульсов в волокнах зрительного нерва. Влияние ЦНС на адаптацию сетчатки к свету проявляется и в том, что освещение одного глаза понижает световую чувствительность неосвещенного глаза. На чувствительность к свету оказывают влияние также звуковые, обонятельные и вкусовые сигналы.

Зрительная фототрансдукция представляет собой комплекс процессов, который отвечает за изменение (фототрансформацию) пигментов и последующую их регенерацию. Необходимо это для передачи информации из внешнего мира к нейронам. Благодаря биохимическим процессам, при влиянии света с различной длиной волны, возникают структурные изменения в строении пигментов, которые находятся в бислойном липидном участке мембран внешней доли фоторецептора.

Изменения в фоторецепторах

Фоторецепторы всех позвоночных животных, включая человека, могут реагировать на световые лучи путем изменения фотопигментов, которые располагаются в бислойных мембранах в области внешней доли колбочек и палочек.

Сам зрительный пигмент представляет собой белок (опсин), который является производным витамина А. Сам бета-каротин содержится в пищевых продуктах, а также синтезируется в клетказ сетчатки (фоторецептоный слой). Эти опсины ил хромофоры в связанном состоянии локализуются в глубине биполярных дисков в зоне внешних долей фоторецепторов.

Около половины опсинов приходится на бислойный липидный слой, который связан снаружи короткими петлями белка. Каждая молекула родопсина имеет в своем составе семь трасмембранных участков, которые окружают хромофор в бислое. Хромофор располагается горизонтально в мембране фоторецептора. Внешний диск мембранного участка имеет большое количество зрительных молекул пигмента. После того, как был поглощен фотон света, вещество пигмента переходит из одной изоформы в другую. В результате этого молекула претерпевает конформационные изменения, а структура рецептора восстанавливается. При этом метародопсин активирует G-белок, что запускает каскад биохимических реакций.

Фотоны света воздействуют на зрительный пигмент, что приводит к активации каскада реакций: фотон - родопсин - метародопсин - трансдуцин - фермент, который гидролизует цГМФ.В результате этого каскада формируется закрывающаяся мембрана на внешнем рецепторе, которая связана с цГМФ и отвечает за работу катионного канала.

В темноте через открытые каналы проникают катионы (в основном ионы натрия), которые приводят к частичной деполяризации ячейки фоторецептора. При этом этот фоторецептор выбрасывает медиатор (глутамат аминокислоты), который воздействует на инаптические окончания нейронов второго порядка. При незначательном световом возбуждении молекула родопсина изомеризуется в активную форму. Это приводит к закрытию ионного трансмембранного канала, и, соответственно, останавливает катионный поток. В результате клетка фоторецептора гиперполяризуется, а медиаторы перестают выделяться в зоне контакта с нейронами второго порядка.

В темноте через трансммбранные каналы осуществляется поток ионов натрия (80%), кальция (15%), магния и других катионов. Чтобы удалить избыток кальция и натрия во время темноты, в клетках фоторецепторов действует катионный обменник. Ранее считалось, что кальций участвует в фотоизомерации родопсина. Однако в настоящее время получены доказательства того, что этот ион играет и другие роли в фототрансдукции. За счет присутствия достаточной концентрации кальция, палочковые фоторецепторы становятся более восприимчивыми к свету, а также значительно увеличивается восстановление этих клеток после освещения.

Колбочковые фоторецепторы способны приспособиться к уровню освещения, поэтому человеческий глаз способен воспринимать объекты при разном освещении (начиная от теней под деревом и заканчивая предметов, расположенных на блестящем освещенном снегу). Палочковые фоторецепторы имеют меньшую приспособляемость к уровню освещения (7-9 единиц и 2 единицы для колбочек и палочек, соответственно).

Фотопигменты экстерорецепторов колбочек и палочек сетчатки глаза

К фотопигментам колбочкового и палочкового аппарата глаза относят:

  • Йодопсин;
  • Родопсин;
  • Цианолаб.

Все эти пигменты отличаются друг от друга аминокислотами, которые входят в состав молекулы. В связи с этим пигменты поглощают определенную длину волны, точнее диапазон длин.

Фотопигменты экстерорецепторов колбочек

В колбочках сетчатки глаза располагается йодопсин и разновидность йодопсина (цианолаб). Все выделяют три типа йодопсина, которые настроены на длину волны в 560 нм (красный), 530 нм (зеленый) и 420 нм (синий).

О существовании и идентификации цианолаба

Цианолаб представляет собой разновидность йодопсина. В сетчатке глаза синие колбочки располагаются регулярно в периферической зоне, зеленые и красные колбочки локализуются хаотично по всей поверхности сетчатки. При этом плотность распределения колбочек с зеленым пигментов больше, чем красных. Наименьшая плотность отмечается у синих колбочек.

В пользу теории трихромазии свидетельствуют следующие факты:

  • Была определена спектральная чувствительность двух пигментов колбочки при помощи денситометрией.
  • С использованием микроспектрометрии было определено три пигмента колбочкового аппарата.
  • Был идентифицирован генетический код, ответственный за синтез красных, синих и зеленых колбочек.
  • Ученым удалось изолировать колбочки и измерить их физиологический ответ на облучение светом с определенной длинной волны.

Теория трохромазии раньше была не в состоянии объяснить наличие четырех основных цветов (синий, желтый, красный, зеленый). Также было затруднительно объяснить, почему люди-дихроматы способны различать белый и желтый цвета. В настоящее время открыт новый фоторецептор сетчатки, в котором роль пигмента исполняет меланопсин. Это открытие расставило все по местам и помогло ответить на многие вопросы.

Также в недавних исследованиях при помощи флуоресцентного микроскопа были изучены срезы сетчатки птиц. При этом было выявлено четыре типа колбочек (фиолетовая, зеленая, красная и синяя). За счет оппонентного цветного зрения фоторецепторы и нейроны дополняют друг друга.

Фотопигмент палочек родопсин

Родопсин относится к семейству G-связанных белков, который так назван из-за механизма трансмембранной передачи сигнала. При этом в процесс вовлекаются G-белки, расположенные в примембранном пространстве. При исследовании родопсина была установлена структура этого пигмента. Это открытие очень важно для биологии и медицины, потому что родопсин является родоначальником в семействе GPCR-рецепторов. В связи с этим его строение используется в изучении всех остальных рецепторов, а также определяет функциональные возможности. Родопсин назван так, потому что имеет ярко-красную окраску (с греческого он дословно переводится как розовое зрение).

Дневное и ночное зрение

Изучая спектры поглощения родопсина, можно заметить, что восстановленный родопсин отвечает за восприятие света в условиях низкой освещенности. При дневном свете этот пигмент разлагается, и максимальная чувствительность родопсина смещается в синюю спектральную область. Это явление получило название эффект Пуркинье.

При ярком освещении палочка перестает воспринимать дневные лучи, а эту роль на себя берет колбочка. При этом происходит возбуждение фоторецепторов в трех областях спектра (синий, зеленый, красный). Далее эти сигналы преобразуются и направляются в центральные структуры мозга. В результате формируется цветное оптическое изображение. Для полного восстановления родопсина в условиях низкой освещенности требуется коло получаса. В течение всего этого времени происходит улучшение сумеречного зрения, которое достигает максимума по окончании периода восстановления пигмента.

Биохимик М.А. Островский провел ряд фундаментальных исследований и показал, что палочки, содержащие пигмент родопсин, участвуют в восприятии объектов в условиях низкого освещения и отвечают за ночное зрение, которое имеет черно-белую окраску.

Зрительный пигмент

В наружных члениках палочковых и колбочковых клеток содержится множество дисков, состоящих из сдвоенных мембран. Структурно-функциональной единицей светочувствительной мембраны фоторецепторов являются зрительные пигменты. В механизме зрения эти молекулы обеспечивает две основные физиологические функции:

Во-первых, поглощают свет в характерной области длины волны, то есть они определяют спектральный диапазон фоторецепторных клеток.

Во-вторых, молекула зрительного пигмента запускает фоторецепторный процесс.

В основе первой функции лежит спектр поглощения молекул, зависящий от природы хромофорной группы, и ее ковалентного или не ковалентного взаимодействия с белковой частью молекулы. В основе второй -- способность молекулы при поглощении света менять свою конформацию: сначала хромофора, а затем белка. А так же молекулы зрительного пигмента на одной из стадии фотопревращения приобретают способность взаимодействовать с другими белками, участвующими в механизме фоторецепции. (Бызов А.Л.,1992)

Зрительный пигмент представляет собой хромогликопротеид. Эта молекула содержит одну хромофорную группу, две олигосахаридные цепочки и водонерастворимый мембранный белок (опсин). Зрительный пигмент - сравнительно небольшая молекула: молекулярная масса родопсина палочек позвоночных, например родопсина быка, составляет около 39 кДа; полипептидная цепь белка состоит из 348 аминокислотных остатков. Самые большие молекулы родопсина обнаружены у насекомых - 383 аминокислотных остатка и у головоногих (осьминога) - 455 остатков.

Хромофорной группой зрительных пигментов позвоночных служат ретиналь-1 (альдегид витамина A1), ретиналь-2, или 2,3-дегидроретиналь (альдегид витамина А2).Положение максимумов спектров поглощения зрительных пигментов, находящихся в палочках и колбочках позвоночных, широко варьирует. Поэтому для лучшего понимания все пигменты классифицируют по природе хромофора, независимо от происхождения. Следовательно, все ретиналь - 1 - содержащие зрительные пигменты относят к родопсинам, ретиналь-2-содержащие - к порфиропсинам. У беспозвоночных (членистоногие, головоногие моллюски), обнаружены также в качестве хромофоров 3- и 4-дегидроретиналь. 3-оксиретинальсодержащие пигменты называются "ксантопсины".

Дж. Уолд предложил классификацию зрительных пигментов, основанную на сочетании двух видов ретиналей - ретиналя - 1 и - 2, а так же двух видов опсинов -- палочкового и колбочкового. Однако эта простая классификация оказалась слишком ограниченной и в последнее время почти не используется. Хотя для пигмента красночувствительных колбочек с л=550-570 нм (например, у птиц или человека) продолжают использовать термин "йодопсин", а для колбочкового пигмента л = 620нм черепах и рыб - термин "цианопсин".

Зрительный пигмент палочки состоит из крупной молекулы белка родопсина, собственно пигмента, - одной из химических форм витамина А.

Родопсин стал первым мембранным белком животного происхождения, для которого была установлена такая укладка полипептидной цепи. Состоит он из белка олеина и альдегида витамина А-ретиналя. При недостатке витамина А нарушается зрительное восприятие, причем палочковое быстрее, чем колбочковое. Особенно высокая плотность расположения молекул родопсина в мембранах дисков со стороны, обращенной к падающему свету. Поглощение света пигментом представляет собой первую стадию превращений, ведущих к распаду и обесцвечиванию зрительного пигмента. А это приводит к изменению ионной проницаемости мембраны фоторецептора и возникновению зрительного сигнала.

При попадании света (а для палочки достаточно 3-5 квантов света) эта молекула распадается на белковую и пигментную части. При этом выделяются ионы, имеющие положительные и отрицательные заряды, т. е. образуется электрически заряженная среда. По клеточной оболочке палочки этот биоток передается, через систему нервных волокон и клеток, в кору затылочных долей головного мозга. Через некоторое время распавшиеся части молекулы вновь соединяются и зрительный пигмент готов к поглощению света. Зная механизм световосприятия, можно понять важность витамина А для зрения.

Мембраны дисков колбочек содержат другие по химическому составу пигменты: йодопсин, хлоролаб, эритролаб. Существует три разных типа колбочек, каждый тип включает преимущественно только один пигмент. Наиболее изучен пигмент колбочек - йодопсин. Различные видимые цвета зависят от соотношения трех видов стимулируемых колбочек.

Ядро глаза

Внутри глазного яблока находится ядро глаза. Оно состоит из водянистой влаги, хрусталика и стекловидного тела. Все эти компоненты прозрачны. А согласно физическим законами прозрачные среды преломляют свет, поэтому прозрачные среды глаза ещё называют преломляющими средами.

Между задней поверхностью роговицы и передней поверхностью радужки находится пространство, называемое передней камерой, а между задней поверхностью радужки и передней поверхностью хрусталика находится задняя камера. Обе камеры заполнены водянистой влагой - внутриглазной жидкостью, обеспечивающей обмен веществ в роговице, хрусталике и стекловидном теле.

Хрусталик - прозрачное, эластичное, плотное образование, расположенное непосредственно за радужкой. Вещество хрусталика заключено в капсулу, в которую вплетаются волокна цинновой связки. Таким образом, хрусталик за счет цинновых связок оказывается в срединном положении, как бы подвешен на связках. Хрусталик представляет собой двояковыпуклую прозрачную линзу. Его свойство - преломлять ход лучей света, попадающих в глаз и увеличивать изображение. Линия между передней и задней поверхностью хрусталика называется экватором. Хрусталик растёт всю жизнь, его оптика и физические качества всё время изменяются. Однако, несмотря на рост, размеры хрусталика остаются постоянными. Так происходит, потому что новые слои, накладываются, уплотняя предыдущие и отодвигая их к центру. В результате формируется ядро хрусталика. В ядре клетки настолько спрессованы, что со временем обмен веществ в них ухудшается, и они теряют прозрачность. Помутнение хрусталика называется катарактой.

Хрусталик, являясь живой тканью, имеет удивительное свойство - изменять кривизну. Это происходит для того, чтобы объекты, расположенные на разных расстояниях от глаза были в фокусе. Для близких объектов мышца реснитчатого тела сокращается, цинновая связка расслабляется, напряжение капсулы хрусталика ослабевает, и вещество хрусталика расширяется. Становясь более выпуклым, хрусталик увеличивает оптическую силу глаза. При разглядывании дальних объектов происходят противоположные мышечные движения и хрусталик сужается.

С возрастом, в связи с формированием ядра, эластичность хрусталика уменьшается. Он уже не может расширяться в нужный момент для разглядывания близких объектов, это явление называется пресбиопией.

Стекловидное тело - это прозрачная желеобразная масса, находящаяся за хрусталиком. Она занимает две задние трети объема глаза. При некоторых заболеваниях стекловидное тело мутнеет, вызывая снижение зрения. Вместе роговица, хрусталик, водянистая влага и стекловидное тело формируют оптическую систему глаза.

Родопсин — основной зрительный пигмент. Содержится в палочках сетчатки глаза морских беспозвоночных, рыб, почти всех наземных позвоночных и человека. Относится к сложным белкам хромопротеинам. Модификации белка, свойственные различным биологическим видам, могут существенно различаться по структуре и молекулярной массе.

Функции родопсина

Под действием света светочувствительный зрительный пигмент изменяется и один из промежуточных продуктов его превращения непосредственно ответствен за возникновение зрительного возбуждения. Зрительные пигменты, содержащиеся в наружном сегменте фоторецепторной клетки, представляют собой сложные окрашенные белки. Та их часть, которая поглощает видимый свет, называется хромофором. Это химическое соединение — альдегид витамина А, или ретиналь. Белок зрительных пигментов, с которыми связан ретиналь, называется опсином.

При поглощении кванта света хромофорная группа белка изомеризуется в транс-форму. Возбуждение зрительного нерва происходит при фотолитическом разложении родопсина за счёт изменения ионного транспорта в фоторецепторе. Впоследствии родопсин восстанавливается в результате синтеза 11-цис-ретиналя и опсина или в процессе синтеза новых дисков наружного слоя сетчатки.

Родопсин относится к суперсемейству трансмембранных рецепторов GPCR. При поглощении света конформация белковой части родопсина меняется, и он активирует G-белок трансдуцин, который активирует фермент цГМФ-фосфодиэстеразу. В результате активации этого фермента в клетке падает концентрация цГМФ и закрываются цГМФ-зависимые натриевые каналы. Так как ионы натрия постоянно выкачиваются из клетки АТФ-азой, концентрация ионов натрия внутри клетки падает, что вызывает её гиперполяризацию. В результате фоторецептор выделяет меньше тормозного медиатора глутамата, и в биполярной нервной клетке, которая «растормаживается», возникают нервные импульсы.

Спектр поглощения родопсина

Рис. 1. Спектр поглощения родопсина лягушки Rana temporaria в дигитониновом экстракте. Видны два максимума поглощения в видимой и ультрафиолетовой области. 1 — родопсин; 2 — индикатор жёлтый. По оси абсцисс — длина волны; по оси ординат — оптическая плотность.

Специфический спектр поглощения зрительного пигмента определяется как свойствами хромофора и опсина, так и характером химической связи между ними. Этот спектр имеет два максимума — один в ультрафиолетовой области, обусловленный опсином, и другой — в видимой области, — поглощение хромофора рис. 1. Превращение при действии света зрительного пигмента до конечного стабильного продукта состоит из ряда очень быстрых промежуточных стадий. Исследуя спектры поглощения промежуточных продуктов в экстрактах родопсина при низких температурах, при которых эти продукты стабильны, удалось подробно описать весь процесс обесцвечивания зрительного пигмента.

В живом глазу наряду с разложением зрительного пигмента, естественно, постоянно идёт процесс его регенерации. При темновой адаптации этот процесс заканчивается только тогда, когда весь свободный опсин соединился с ретиналем.

Дневное и ночное зрение

Из спектров поглощения родопсина видно, что восстановленный родопсин отвечает за ночное зрение, а при дневном «цветовом зрении» разлагается и максимум его чувствительности смещается в синюю область. При достаточном освещении палочка работает совместно с колбочкой, являясь приёмником синей области спектра. . Полное восстановление родопсина у человека занимает около 30 минут.