Для развития пространственного воображения полезно выполнять комплексные чертежи группы геометрических тел и несложных моделей с натуры.

Рисунок 147

Наглядное изображение группы геометрических тел показано на рисунке 147, а. Построение комплексного чертежа этой группы геометрических тел следует начинать с горизонтальной проекции, так как основания цилиндра, конуса и шестигранной пирамиды проецируются на горизонтальную плоскость проекции без искажений. С помощью вертикальных линий связи строят фронтальную проекцию фигур. Профильную проекцию строят при помощи вертикальных и горизонтальных линий связи (рисунок 147, б), проводимых от вершин и точек линии основания.

8 Технический рисунок

Техническим рисунком называют наглядное изображение, обладающее основными свойствами аксонометрических проекций или перспективного рисунка, выполненное без применения чертежных инструментов, в глазомерном масштабе, с соблюдением пропорций и возможным оттенением формы.

Инженеры, дизайнеры, архитекторы при проектировании новых образцов техники, изделий, сооружений используют технический рисунок как средство фиксации первых, промежуточных и окончательных вариантов решения технического замысла. Кроме того, технические рисунки служат для проверки правильности прочтения сложной формы, отображенной на чертеже.

Технический рисунок можно выполнить, используя метод центрального проецирования, и тем самым получить перспективное изображение предмета, либо метод параллельного проецирования (аксонометрические проекции), построив наглядное изображение без перспективных искажений.

Технический рисунок можно выполнять без выявления светотени, с оттенением объема, а также с передачей цвета и материала изображаемого объекта.

На технических рисунках допускается выявлять объем предметов приемами штриховки (параллельными штрихами), шраффировки (штрихами, нанесенными в виде сетки) и точечным оттенением.

8.1 Методы оттенений

Светотень наносят на линейный рисунок штриховкой, шраффировкой, оттенением точками и другими методами.

8.1.1 Общие понятия

Для придания рисунку большей наглядности и выразительности в техническом рисовании применяются условные средства передачи объема с помощью оттенений - светотени. Светотенью называется распределение света на поверхностях предмета. Освещенность предмета зависит от угла наклона световых лучей. В техническом рисовании условно принято считать, что источник света находится сверху слева и сзади рисующего. Световые лучи составляют угол наклона к горизонту, примерно равный 45° . Выпуклость рисунка предмета достигается путем градации света и тени: наиболее освещенные поверхности оттеняются светлее, чем поверхности, удаленные дальше от света.

Светотень состоит из следующих элементов: собственной тени, падающей тени, рефлекса, полутона, света и блика.

Собственной тенью называется тень, находящаяся на неосвещенной части предмета.

Падающей тенью называетсятень, отбрасываемая предметом на какую-либо поверхность. Так как технический рисунок носит в основном условный, прикладной характер, падающие тени на нем не показывают.

Рефлексом называется отраженный свет на поверхности предмета в неосвещенной его части. С помощью рефлекса создается выпуклость, стереоскопичность рисунка.

Слабоосвещенные места на поверхностях предмета называются полутонами . Полутонами осуществляется постепенный, плавный переход от тени к свету, чтобы рисунок не получился слишком контрастным. Полутоном выявляется объемная форма предмета.

Свет - наиболее освещенная часть поверхности предмета.

Блик - самое светлое пятно на предмете. В техническом рисунке блики показывают в основном на поверхностях вращения.

>>Черчение: Чертежи геометрических тел

Геометрическое тело - это замкнутая часть пространства, ограниченная плоскими или кривыми поверхностями.

Все геометрические тела можно разделить на две группы: многогранники (куб, призма, параллелепипед, пи-рамида) и тела вращения (цилиндр, конус, шар). Форма каждого тела имеет свои характерные признаки.
Каждое гранное геометрическое тело имеет грани, ребра и вершины (рис. 18).

Процесе получения изображения геометрических тел можно рассматривать как процесс отображения каждого элемента его формы на плоскостях проекций.

Рассмотрим получение изображения куба на трех плоскостях проекций. Куб расположим перед плоскостью V так, чтобы передняя и задняя (от наблюдателя) грани оказались ей параллельными. Тогда боковые, верхняя и нижняя грани будут перпендикулярны к плоскости V.

Чтобы построить проекцию куба на плоскости, надо через вершины, обозначенные цифрами 1, 2, 3, 4 и 5, 6, 7, 8, провести проецирующие лучи перпендикулярно к плоскостям V, Н, W. Точки пересечения проецирующих лучей с плоскостью проекций дадут точки, которые являются проекциями вершин куба (рис. 119, а). Некоторые проекции точек при проецировании «сливаются», например: 1" с 5", точка 21 - с точкой 6", точка 3" - с точкой Т, точка 4" - с точкой 3", точка 2 - с точкой 3. Если соединим фронтальные проекции вершин куба, то получим фронтальную проекцию куба. Куб на плоскость V отобразится в виде квадрата . Стороны квадрата будут являться проекциями ребер и граней, а сам квадрат - проекциями двух граней. Мы получили метрически определенный чертеж. Это означает, что по чертежу можно определить форму и размеры предмета (рис. 119, б). Для нанесения размеров куба используют условный знак квадрата - □, указывающий на то, что в основании изображенного предмета находится квадрат. Рядом со знаком ставится число, соответствующее размеру (в миллиметрах) стороны квадрата.

Геометрических тел представлены в таблице 11.

Рассмотрим, как изображаются тела вращения в системе трех плоскостей проекций. Для простановки размеров цилиндра и конуса используют знак диаметра - , уточняющий, что в основании изображенного предмета находится круг. Высота знака диаметра равна высоте числа, проставленного рядом с ним, например, 26. Эта запись означает, что в основании находится круг диаметром 26 мм. Использование этого знака позволяет сократить количество изображений на чертеже (см. таблицу 12).

Вопросы и задания

1. Какие две группы геометрических тел вы знаете?
2. Какие геометрические тела относятся к
телам вращения ?
3. Какие геометрические признаки характеризуют многогранники?
4. Составьте кроссворд, используя названия геометрических тел.


Н.А.Гордеенко, В.В.Степакова - Черчение.,9 класс
Отослано читателями из интернет-сайтов

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

КАФЕДРА «ОБЩЕТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ»

Комплексный чертеж

и аксонометрическая проекция

группы геометрических тел.

Нахождение проекций точек,

принадлежащих поверхности тела

Методические указания

к практическому занятию по дисциплине

«Инженерная графика»

РПК «Политехник»

Волгоград

Комплексный чертеж и аксонометрическая проекция группы геометрических тел. Нахождение проекций точек, принадлежащих поверхности тела: Методические указания к практическому занятию по дисциплине «Инженерная графика» / Сост. , ; Волгоград. гос. техн. ун-т. – Волгоград, 2007. – 23 с.

Рассматривается построение по двум заданным видам группы геометрических тел (призма, цилиндр, конус и пирамида) третьего изображения, их аксонометрической проекции (изометрии), а также построение двух других проекций точки и в изометрии по заданной одной ее проекции на ортогональном чертеже.

Содержится необходимый для выполнения графической работы материал, представлен пример выполнения и контрольные вопросы.

Предназначены для студентов, специальностей 151001.51 «Технология машиностроения», 260704.51 «Технология текстильных изделий», 140212.51 «Электроснабжение».

Ил. 9. Библиогр.: 7 назв.

Рецензент:

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Составители: Денис Олегович Ладыгин, Валентина Антоновна Деманова

Комплексный чертеж и аксонометрическая проекция группы геометрических тел.

Нахождение проекций точек, принадлежащих поверхности тела.

Методические указания к практическому занятию по дисциплине «Инженерная графика»

Темплан 2007 г., поз. № 14.

Подписано в печать г. Формат 60×84 1/16.

Бумага листовая. Печать офсетная.

Усл. печ. л. 1,44. Усл. авт. л. 1,31.

Тираж 100 экз. Заказ №

Волгоградский государственный технический университет

400131 Волгоград, просп. им. , 28.

РПК «Политехник»

Волгоградского государственного технического университета

400131 Волгоград, ул. Советская, 35.

Ó Волгоградский

государственный

технический

Рис. 1. Примеры деталей сложной формы, ограниченные

элементарными поверхностями

практическОЕ ЗАНЯТИЕ

Комплексный чертеж и аксонометрическая

проекция группы геометрических тел.

Нахождение проекций точек,

принадлежащих поверхности тела.

Цель : 1. Закрепление знаний по темам «Аксонометрические проекции», «Проекции геометрических тел на три плоскости проекций», «Проекции моделей».

2. Научить студентов по двум заданным видам группы геометрических тел строить третье изображение, а также их аксонометрическую проекцию (изометрию).

3. Развить пространственное воображение у студентов.

4. Изучить методы изображения предметов на плоскости.

Продолжительность : 4 часа.

В результате выполнения данной работы студенты должны знать методы и виды проецирования на плоскость.

Уметь:

· выполнять геометрические построения на чертежах;

· применять способы построения изображений пространственных форм на плоскости и решать проекционные задачи;

· строить аксонометрическую проекцию.

Содержание задания : Студент согласно своему варианту (номеру по списку журнала) выбирает задание, расположенное в Приложении Б, в котором изображена группа геометрических тел (призма, цилиндр, конус и пирамида) на виде сверху (горизонтальный) и спереди (фронтальный); требуется построить изображение на профильной плоскости проекций (вид слева) данной группы, изометрическую проекцию, а также по заданной одной проекции точки на ортогональном чертеже, требуется построить две другие ее проекции и в изометрии по примеру, приведенному в Приложении А.

Требования к оформлению задания:

1. Работа выполняется на одном листе чертежной бумаги стандартного формата АЗ (297x420) (построение 3-х проекций группы тел) и на одном листе формата А4 (210x297) (аксонометрическая проекция) с соблюдением правил оформления чертежей согласно ГОСТов ЕСКД.

2. Все построения выполняются в карандаше с помощью чертежных инструментов (циркуль, линейка, ластик) точно, аккуратно и четко.

3. Построения выполняются:

· сплошными основными линиями (s = 0,8 - 1,0 мм) (для проекций геометрических тел);

· сплошными тонкими линиями (s/2 - s/3) (для линий связи, невидимых, центровых и осевых).

4. Все надписи на чертеже выполняются чертежным шрифтом номером 5 или 3,5.

Порядок выполнения:

1. Внимательно ознакомиться с данными методическими указаниями.

2. Взять свой вариант задания из Приложения Б.

3. Внимательно изучить задание и распределить по рабочему полю чертежа весь материал задания, подлежащий выполнению.

4. Перечертить виды спереди и сверху так, как они указаны в задании, и попытаться мысленно представить расположение геометрических тел в пространстве

5. Подойти к преподавателю для простановки проекций точек.

6. Выполнить вид слева, изометрическую проекцию группы тел и показать на них проекции точек А, В, С, D.

7. Проставить размеры, обвести изображения, провести самопроверку и подготовиться к защите задания по контрольным вопросам. Защита практической работы проводится на занятиях, в отдельных случаях, вне занятий, но до момента выполнения следующей работы.

1. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

При проецировании многогранника на плоскость чертежа необходимо уметь мысленно разделять его на составные части и правильно определять порядок их изображения. При проецировании многогранника его грани проецируются как плоскости, ребра – как прямые различного положения, а вершины – как точки.

Ниже приводятся правила (порядок) построения каждого геометрического тела в отдельности.

1.1. Призма

Ортогональные проекции призмы.

Рассмотрим на примере правильной прямой пятиугольной призмы ее ортогональные проекции. На рис. 2, а показано проецирование призмы на

три плоскости проекций.

Для построения ортогонального чертежа сначала проводят оси координат Ох, Оу и О z (рис. 2, б). Затем проводят осевые и центровые линии и строят горизонтальную проекцию призмы. Для этого на плоскости Н строят правильный пятиугольник. Поскольку призма прямая, ее ребра и грани располагаются перпендикулярно к основаниям, и на горизонтальной проекции два основания сольются в одно, причем видимым будет верхнее основание. Все боковые грани спроецируются в отрезки прямых линий (1 2, 2 3 и т. д.), которые, в свою очередь, совпадут со сторонами основания. Боковые ребра призмы спроецируются в точки как прямые, перпендикулярные к плоскости проекций, и совпадут с вершинами основания (точки 1 , 2, 3, 4, 5). Итак, горизонтальная проекция данной призмы изобразилась в виде правильного пятиугольника, в который спроецировались не только два основания, но и боковые грани и ребра. Так как основания призмы параллельны плоскости Н , то их горизонтальная проекция изобразилась в натуральную величину.

Для построения фронтальной проекции призмы из горизонтальной проекции каждой вершины основании проводят линии проекционной связи параллельно оси Оу до оси Ох (рис. 3, а). Таким образом, с горизонтальной проекции перенесены на фронтальную расстояния между вершинами 1...5, измеренные параллельно Ох. Из этих точек (1"...5") параллельно оси О z проводят направления пяти ребер боковой поверхности и на них откладывают высоту призмы. Так как верхнее основание призмы параллельно плоскости Н , а нижнее расположено в плоскости Н, то на фронтальную плоскость V эти основания спроецируются как отрезки, один из которых будет лежать на оси Ох (нижнее основание), а второй будет находиться на расстоянии от оси Ох , равном высоте призмы (верхнее основание). Боковые грани призмы спроецируются в виде прямоугольников. Фронтальная проекция грани, параллельной плоскости V , будет проецироваться в натуральную величину. Остальные грани проецируются с искажением, так как расположены не параллельно плоскости V .
На фронтальной плоскости проекций видимыми гранями будут грани с основаниями 1 2 и 1 5 , а остальные будут невидимые.

Ребра, проведенные из точек 1 , 2 и 5 , будут видимыми, а из точек 3 и 4 – невидимыми; поэтому их проекции на плоскости V изображают штриховой линией (рис. 2,а).

Для построения профильной проекции призмы надо провести линии проекционной связи от точек 1...5 горизонтальной проекции и высоту призмы перенести с фронтальной проекции. На профильной плоскости проекций грани с основаниями 1 2 и 2 3 будут видимыми, а с основаниями 1 5 и 5 4 – невидимыми. Грань с основанием 3 4 спроецируется в прямую линию, так как расположена перпендикулярно плоскости W . Профильные проекции ребер, проведенные из точек 3" и 4", совпадут. Таким образом, в одну прямую линию спроецируются два ребра и грань, расположенная между ними. На профильную плоскость проекций все грани призмы проецируются с искажением, так как ни одна грань не параллельна плоскости W .

Построение призмы в аксонометрии (изометрии).

Построение начинают с проведения аксонометрических осей, на которых строят нижнее основание (рис. 3, б). Для упрощения построения начало координат (точку О ) располагают в центре основания призмы (точка О1 ) . Высота призмы совпадает с осью О z , а центровые линии – с осями Ох и Оу. Сторона 3 4 на горизонтальной плоскости проекций параллельна оси Ох. В изометрии это сохранится. Сторона 3 4 будет находиться от точки О1 на расстоянии, равном расстоянию от точки О1 до стороны 3 4 на горизонтальной плоскости проекций, в изометрии это расстояние откладывают но оси Оу. Затем на плоскости Н по центровой линии измеряют расстояние от точки О1 до прямой, соединяющей вершины 2 и 5, и соответственно переносят его в изометрию. Через отложенную на центровой линии точку проводят прямую параллельно оси Ох и на ней откладывают расстояния между вершинами 2 и 5, взятые с горизонтальной проекции. Вершина 1 основания лежит на центровой линии, параллельной оси Оу . В изометрии от точки О1 по соответствующей центровой линии откладывают расстояние до вершины 1 , взятое с горизонтальной проекции. Полученные точки (вершины углов) соединяют отрезками. Для построения боковых граней призмы из каждой вершины нижнего основания параллельно оси О z проводят прямые, на которых откладывают высоту призмы, взятую с фронтальной или профильной проекций. По

ченные точки соединяют отрезками и получают верхнее основание.


Рис. 3, б.

Построение точки, лежащей на поверхности призмы.

Точка, лежащая на боковой грани призмы, задана одной проекцией на ортогональном чертеже, требуется построить две другие ее проекции. Сначала строят проекцию точки на той плоскости проекций, где грань, на которой лежит заданная точка, проецируется в линию. Рассмотрим это на примере точки А (рис. 3, а), которая задана проекцией а". Так как на плоскости V грань, на которой лежит точка А, невидимая, обозначение точки а" взято в скобки. На плоскость Н эта грань проецируется в отрезок, совпадающий со стороной основания 2 3. Из точки а" проводят вниз линию проекционной связи до пересечения с отрезком 2 3, получают точку а – горизонтальную проекцию точки А.

Для нахождения профильной проекции точки А проводят линии проекционной связи от горизонтальной и фронтальной проекций (точки а и а") до их взаимного пересечения на плоскости W , получают точку а", которая и будет искомой профильной проекцией точки А.

Для нахождения точки А в изометрии построение начинают с нахождения вторичной горизонтальной проекции, т. е. строят вторичную проекцию на стороне 2 3. На плоскости Н через горизонтальную проекцию а точки А параллельно оси Ох проводят дополнительную прямую линяю, чтобы определить расстояние от точки а до центровой линии основания, в данном случае оно равно п. В изометрии параллельно оси Ох проводит дополнительную прямую на расстоянии п от центровой линии, параллельной оси Ох. В пересечении этой линии и отрезка 2 3 получают точку а. Так как точка А лежит на какой-то высоте от нижнего основания, то от точки а параллельно оси О z проводят прямую линию и на ней от точки а откладывают отрезок h , взятый с фронтальной (или профильной) проекции. Полученная точка и будет искомой точкой А.

1.2. Пирамида

Пирамидой называется многогранник, в основании которого лежит многоугольник, а боковые грани являются треугольниками, имеющими общую вершину.

Элементы пирамиды показаны на рис. 4.

Ортогональные проекции правильной полной пирамиды.

На рис. 4 показано проецирование пирамиды. Порядок выполнения ортогонального чертежа такой же, как и чертежа призмы.

Сначала проводят оси координат, осевые и центровые линии, а потом на центровых линиях строят горизонтальную проекцию пирамиды, начиная построение с многоугольника, лежащего в основании (рис. 5). Основание пирамиды расположено в плоскости Н. Все боковые грани спроецируются в треугольники. Горизонтальная проекция вершины S совпадает с центром основания – точкой О1 . Таким образом, на горизонтальной проекции пирамиды боковые грани будут видимыми, но спроецируются они с искажением, так как располагаются наклонно относительно плоскости Н. Плоскость основания будет невидимой, так как закрыта боковыми гранями пирамиды.

При построении фронтальной проекции пирамиды ее основание как

плоскость, перпендикулярная к плоскости V , спроецируется в отрезок, который совпадает с осью Ох, так как основание лежит в плоскости Н. Боковые грани пирамиды проецируются в треугольники с искажением, так как расположены наклонно относительно плоскости V . Грани 1 S 2 и 1 S 3 будут видимыми, а грань 2 S 3 – невидимой.

На профильную плоскость проекций основание пирамиды тоже спроецируется в отрезок, лежащий на оси Оу. Проекции боковых граней 1 S 2 и 1 S 3 на плоскости W совпадают, а грань 2 S 3 проецируется в прямую линию, так как она расположена перпендикулярно плоскости W . Видимой гранью боковой поверхности будет грань 1 S 2.

Построение правильной полной пирамиды в аксонометрии (изометрии).

Построение начинают с проведения аксонометрических осей Ох, Оу и О z (рис. 6, б). Высоту пирамиды располагают на оси О z . Вторичная проекция вершины будет находиться в точке О1 . От точки О1 по оси Оу откладывают расстояние до вершины 1 основания и до середины стороны основания 2 3, взятое с горизонтальной проекции пирамиды, где оно измеряется от горизонтальной проекции s вершины S . Через середину стороны 23 проводят прямую линию параллельно оси Ох и на ней в обе стороны откладывают отрезки, равные половине стороны основания. Этот размер берется с горизонтальной проекции основания. От точки О1 по оси О z откладывают высоту пирамиды, которую берут с фронтальной или профильной проекции, где она изображается без искажения, так как параллельна оси О z . Видимой боковой гранью пирамиды будет ближняя грань 1 S 2 . Две другие грани боковой поверхности и основание невидимые.

Построение точки, лежащей на поверхности пирамиды.

Точка А лежит на боковой поверхности пирамиды, задана ее профильная проекция а" (рис. 6, а). Требуется построить фронтальную и горизонтальную проекции этой точки, а также построить ее на изометрическом изображении пирамиды.


Рис. 6, а. Рис. 6, б.

Поскольку боковая грань, на которой лежит точка А, располагается наклонно ко всем трем плоскостям проекций, то ни на одну из этих плоскостей она не спроецируется в линию, как это было у правильной пятиугольной призмы. Построить две проекции заданной точки можно только с помощью дополнительных построений, для чего в плоскости 1 S 2 проводят прямую через точку А. Профильную проекцию этой прямой можно провести в любом направлении через проекцию а" точки А. На эпюре эта проекция проведена через проекцию s " вершины S до пересечения со стороной основания 1"2" в точке 4"". Для построения проекций точки А нужно построить проекции дополнительной прямой s 4 на плоскостях V и H .

Для построения ее горизонтальной проекции от точек 4" и а" с профильной проекции на горизонтальную проводят линии проекционной связи: из точки 4" – до пересечения со стороной 1 2 в точке 4; из точки а" – до пересечения с построенной прямой s 4 в точке а, которая будет горизонтальной проекцией точки А. Имея две проекции точки А, фронтальную проекцию а" точки А находят с помощью линий проекционной связи.

При построении точки А в изометрической проекции необходимо сначала построить на основании пирамиды ее вторичную горизонтальную проекцию (рис. 6, б). Для этого на плоскости Н определяются координаты Х A = п и УА = т относительно горизонтальной проекции s вершины S . Эти размеры (п и т) откладывают в изометрии от точки О1 (рис. 6, б), получают вторичную горизонтальную проекцию а1 точки А.

Через построенную точку а1 параллельно оси О z проводят линию, на которой откладывают расстояние h , взятое с фронтальной или профильной проекции. Полученная точка А и будет изображением точки А в изометрии.

1.3. Цилиндр

Ортогональные проекции полного прямого кругового цилиндра.

Горизонтальная проекция полного прямого кругового цилиндра будет кругом (рис. 7, а), поскольку основания цилиндра при проецировании совпадут. При этом верхнее основание будет видимым, а нижнее – невидимым. Боковая цилиндрическая поверхность перпендикулярна к основаниям, и поэтому она спроецируется в окружность. Следовательно, на горизонтальной проекции в одну и ту же окружность спроецировались очерки двух оснований цилиндра и его боковая поверхность.

На фронтальную плоскость проекций цилиндр спроецируется в прямоугольник, верхняя сторона которого является фронтальной проекцией верхнего основания, а нижняя сторона (лежащая на оси Ох) – проекцией нижнего основания. Две другие стороны этого прямоугольника представляют собой фронтальные проекции двух крайних образующих цилиндрической поверхности, проходящих через точки 1", 2".

Профильная проекция цилиндра представляет собой такой же прямоугольник, что и фронтальная, но проекции крайних образующих проходят через точки 3" и 4".

Образующие цилиндра, которые на фронтальной проекции изобразились крайними, на профильной проекции, изобразятся совпадающими с осью вращения и друг с другом. При этом образующая, проходящая через точку 2, 1 , – видимой.

Образующие цилиндра, которые на профильной проекции изобразились крайними, на фронтальной проекции изобразятся совпадающими с осью вращения и друг с другом. При этом образующая, проходящая через точку 4, будет невидимой, а образующая, проходящая через точку 3, – видимой.

На фронтальной проекции видимой будет та часть цилиндра, которая на горизонтальной проекции располагается вниз от центровой линии 1 2 .

На профильной проекции видимой будет та часть цилиндра, которая на горизонтальной проекции располагается слева от центровой линии 3 4.

Крайние образующие, проходящие через точки 1, 2, 3, 4, на горизонтальной проекции изобразятся точками и будут лежать в пересечении центровых линий и окружности.

Построение цилиндра в аксонометрии.

На рис. 7, б показано построение прямого кругового полного цилиндра в прямоугольной изометрической проекции. Сначала проводят центровые линии нижнего основания параллельно аксонометрическим осям Ох и Оу. Затем из точки О2 проводят ось параллельно оси О z и откладывают высоту цилиндра, взятую с фронтальной или профильной проекции. Через полученную точку О1 проводят центровые линии параллельно осям Ох и Оу. На осях, проведенных из точек О1 и О2 строят овалы, которые являются изображениями оснований цилиндра в прямоугольной изометрии.

Изображение окружности в прямоугольной изометрической проекции во всех трех плоскостях проекций представляет собой одинаковые по форме эллипсы (рис. 8).

Если изображаемая окружность лежит в плоскости Н или в плоскости, параллельной Н , направление малой оси эллипса будет совпадать с направлением оси О z (рис. 8). Если окружность расположена в плоскости V или в плоскости, параллельной ей, направление малой оси будет совпадать с направлением оси Оу. Если окружность расположена в плоскости W или в плоскости, параллельной ей, направление малой оси будет совпадать с осью Ох.


Рис. 8.

Большую ось эллипса проводят перпендикулярно малой оси. Величина малой оси эллипса берется равной 0,71d , а величина большой оси – 1,22 d , где d диаметр изображаемой окружности.

При построении эллипса, изображающего окружность небольшого диаметра, достаточно построить восемь точек, принадлежащих эллипсу (рис. 7). Четыре из них являются концами осей эллипса (А, В, С, D ), а четыре других (N 1 , N 2 , N 3 , N 4 ) расположены на прямых, параллельных аксонометрическим осям, на расстоянии, равном радиусу изображаемой окружности от центра эллипса.

Построение точки, лежащей на поверхности цилиндра.

Точка А, лежащая на боковой поверхности цилиндра (рис. 7, а), задана фронтальной проекцией а" как невидимая. Требуется построить ее горизонтальную и профильную проекции. Сначала строят горизонтальную проекцию точки А. Для этого от фронтальной проекции а" точки А проводят линию проекционной связи до пересечения с горизонтальной проекцией цилиндра – окружностью. Эта линия пересекает окружность дважды. Так как точка А задана фронтальной проекцией как невидимая, то на горизонтальной проекции из двух точек выбирается та, которая лежит ближе к оси Ох. Профильную проекцию а" точки А строят с помощью линий проекционной связи, проведенных с фронтальной и горизонтальной проекций. Так как на горизонтальной проекции цилиндра проекция а точки А лежит слева от центровой линии параллельной оси Оу, то на профильной проекции точка А будет видимой.

Для построения точки А в прямоугольной изометрической проекции сначала строят вторичную проекцию а точки А по размеру п, взятому с горизонтальной проекции. От точки а , параллельно оси О z проводят прямую, на которой от точки а откладывают расстояние h , взятое с фронтальной или профильной проекции, получают точку А.

1.4. Конус

Ортогональные проекции полного прямого кругового конуса.

Горизонтальная проекция полного прямого кругового конуса – круг (рис. 9, а), в который спроецировалась боковая поверхность конуса как видимая. Основание конуса при проецировании совпадет с проекцией боковой поверхности и будет невидимым.

Рис. 9, а. Рис. 9, б.


Фронтальная и профильные проекции конуса изобразятся как равнобедренные треугольники, нижние стороны которых являются проекциями основания конуса. При проецировании они совпадут с осями Ох и Оу, так как конус стоит на плоскости Н .

Две другие стороны треугольника (1" S " и 2" S ") на фронтальной плоскости проекций будут проекциями крайних образующих конуса. На горизонтальной плоскости проекций проекции этих образующих совпадают с диаметром основания, параллельным оси Ох, на профильной плоскости проекций их проекции совпадают с осевой линией. Видимой будет образующая S 1 .

Две стороны треугольника (3" S " и 4" S " ) на профильной проекций представляют собой профильные проекции крайних образующих конуса. На горизонтальной плоскости проекций эти образующие при проецировании совпадают с диаметром основания, параллельным оси Оу, на фронтальной плоскости проекций проекции этих образующих совпадают с осью вращения. Видимой будет образующая S 3.

Построение конуса в аксонометрии.

На рис. 9, б показано построение прямого кругового конуса в прямо-

угольной изометрической проекции. Построение начинают с проведения центровых линий основания параллельно – аксонометрическим осям Ох, Оу и оси вращения, параллельной оси О z . На центровых линиях строят окружность основания, которая в изометрии изображается как эллипс. Для упрощения построения эллипс заменяют овалом. Затем от точки O 1 по оси вращения (параллельной оси О z ) откладывают высоту конуса, взятую с фронтальной или профильной проекции. Точка S будет вершиной конуса. Вершину конуса соединяют касательными с основанием.

Построение точки, лежащей на поверхности конуса.

Точка, лежащая на боковой поверхности конуса, задана горизонтальной проекцией а , требуется построить ее фронтальную и профильную проекции. Для этого через горизонтальные проекции вершины S и точки А (s и а) проводят образующую до пересечения с основанием конуса (рис. 9, а – точка 5). Затем строят фронтальную проекцию этой образующей. С помощью линии проекционной связи определяют фронтальную проекцию 5" точки 5. Соединив прямой точки s " и 5" , получают фронтальную проекцию образующей, на которой лежит точка А. С горизонтальной проекции проводят линию проекционной связи до пересечения с построенной образующей. Точка пересечения будет фронтальной проекцией а" точки А. Профильную проекцию а" точки А строят с помощью линий проекционной связи, проведенных с горизонтальной и фронтальной проекции.

Точка В, лежащая на боковой поверхности конуса, задана фронтальной проекцией b " как невидимая (рис. 9, а), требуется построить ее горизонтальную и профильную проекции. В данном случае для построения проекций точки В используют вспомогательную окружность (параллель), проходящую через точку В. На фронтальной проекции эта окружность изобразится отрезком, заключенным между крайними образующими, и будет проходить через фронтальную проекцию b " точки В. Построим горизонтальную проекцию этой окружности. Радиусом, равным расстоянию от оси вращения (на фронтальной проекции) до крайней образующей, измеренному по отрезку, который проходит через точку b ", проведем окружность на горизонтальной проекции. Опустив на эту окружность линию связи из точки b ", получим две точки пересечения. Так как точка В на фронтальной проекции задана невидимой, на горизонтальной проекции ее проекция находится выше диаметра 1 2, т. е. на той части конуса, которая на фронтальной проекции невидимая.

На горизонтальной плоскости проекций точка В будет видимой, т. к. при проецировании конуса на горизонтальную плоскость проекций боковая поверхность будет видимой.

Профильную проекцию b " точки В , строят с помощью линий проекционной связи, проведенных с горизонтальной и фронтальной проекции. Здесь она будет видимой, так как лежит в левой части горизонтальной проекции конуса, а эта часть конуса на профильной проекции видимая.

Построение точек А и В в изометрической проекции (рис. 9, б) выполняют в следующей последовательности: строят вторичные горизонтальные проекции этих точек, и от них параллельно оси О z откладывают расстояния, взятые с фронтальной или профильной проекции, от основания конуса до проекций этих точек.

2. Контрольные вопросы

Как по двум заданным проекциям призмы построить третью? Как построить изометрическую проекцию призмы (цилиндра, конуса, пирамиды) ? Как по заданной одной проекции точки на ортогональном чертеже призмы (цилиндра, конуса, пирамиды) построить две другие ее проекции и в изометрии? Как изображается окружность в прямоугольной изометрической проекции? Порядок построения. Какие виды аксонометрических проекций Вы знаете? Что называется пирамидой? Ее элементы.

1. Боголюбов. – М.: Машиностроение, 1989.

2. Брилинг: Учебник для сред. спец. учеб. заведений. – 2-е изд., перераб. и доп. – М.: Стройиздат, 1989. – 420с.: ил.

4. , Миронов графика: Учебник. – 2-е изд., испр. и доп. – М.: Высш. шк.; Издательский центр «Академия», 2001. – 288 с.: ил.

5. , Суворова черчение в вопросах и ответах. Справочник. – М.: Машиностроение, 1984.

6. Лагерь графика: Учебник – М.: Высш. шк.; 2003. – 272 с.: ил.

7. Чекмарев графика: Учебник – М.: Высш. шк.; 2002. – 365 с.: ил.

4. ПРИЛОЖЕНИЯ

Приложение А

Пример выполнения задания

Приложение Б

Варианты заданий

Продолжение прил. Б

Продолжение прил. Б

Продолжение прил. Б

Любое геометрическое тело состоит из оболочки, т. е. внешней поверхности, и какого-либо материала, его наполняющего (рис. 42). Каждое геометрическое тело имеет свою форму, кото­рая различается по составу, структуре и размерам.

Состав формы геометрического тела - перечень отсеков по­верхностей, составляющих его (табл. 4). Так, форма прямоуголь­ного параллелепипеда состоит из шести отсеков, поверхностей (граней): две из них являются основаниями параллелепипеда, а остальные четыре отсека образуют замкнутую выпуклую лома­ную поверхность, называемую боковой поверхностью.

Рис 42. Геометрическое тело: 1 - оболочка; 2 - отсеки поверхностей, образующих оболочку тела

Структура формы геометрического тела - характеристика формы, которая показывает взаимосвязь и расположение отсеков поверхностей относительно друг друга (см. рис. 44).

Эти характеристики взаимосвязаны и в наибольшей степени определяют форму геометрического тела и любого другого объ­екта.

По форме простые геометрические тела делятся на много­гранники и тела вращения.

Плоскость является частным случаем поверхности.

Многогранники - геометрические тела, оболочка которых об­разована отсеками плоскостей (рис. 43, а).

Грани - отсеки плоскостей, которые составляют поверхность (оболочку) многогранника; ребра - отрезки прямых, по которым пересекаются грани; вершины - концы ребер.

Тела вращения - геометрические тела (рис. 43, б), оболочка которых представляет собой поверхность вращения (например, шар) либо состоит из отсека поверхности вращения и одного (двух) отсека плоскостей (например, конус, цилиндр и т. п.).

Рис. 43. Многогранники (а) и тела вращения (б): 1 - оболочка геометрического тела;
2 - отсеки плоскостей; 3 - отсеки поверхностей вращения

4. Состав простых геометрических тел




Структура формы влияет на внешний облик геометрического тела. Рассмотрим это на примере прямого и наклонного цилинд­ров (рис. 44), отсеки оснований которых по-разному расположены относительно друг друга.

Рис. 44. Структурные различия в форме цилиндров

Рис. 45. Изменения формы цилиндров



Рис. 46. Четырехугольные пирамиды различной формы

Сравнивая изображения цилиндров на рисунке 45, можно сделать вывод, что изменение положения одного из оснований приводит к изменению формы геометрического тела.

Изменение высоты, ширины, длины, диаметра основания, угла наклона осевой, положение оснований относительно друг друга су­щественно влияет на форму геометрических тел. Например, рас­смотрите четырехугольные пирамиды различной формы (рис. 46).

Рис. 47. Геометрические тела

Формы деталей, встречающихся в технике, представляют собой сочетание различных геометрических тел или их частей.

Для выполнения и чтения чертежей деталей нужно знать, как изображаются геометрические тела.

Построение проекций прямого цилиндра с вертикальной осью (рис. 4.6, а ) начинают с изображения основания цилиндра, представляющего собой круг. Поскольку круг расположен параллельно плоскости проекций π1 и, следовательно, изображается на ней без искажений, его горизонтальная проекция – круг, а фронтальная и профильная – горизонтальные отрезки прямых, равные диаметру круга. Фронтальная и профильная проекции цилиндра очерчиваются отрезками прямых, представляющими проекции его основания и крайних образующих. На всех проекциях проводят оси симметрии. Размеры цилиндра определяются диаметром его основания и высотой.

Фронтальная и профильные проекции цилиндра одинаковы, поэтому в данном случае профильная проекция лишняя. На рис. 4.6 чертежи всех геометрических тел выполнены в трех проекциях лишь с той целью, чтобы показать, какие проекции эти тела имеют.

Одно изображение конуса вращения (рис. 4.6, б ) сходно с изображением цилиндра. Так, на горизонтальной проекции конус изображен кругом. На нем наносят центровые линии. Диаметр круга равен диаметру основания конуса. Два других изображения конуса – равнобедренные треугольники. На этих проекциях также наносят оси симметрии. Для конуса указывают диаметр его основания и высоту.

На рис. 4.6, в представлены чертеж и наглядное изображение шара. Все проекции шара – окружности. Диаметр их равен диаметру шара. На каждом изображении проводят центровые линии.

Так же как и шар, куб имеет три одинаковые проекции (рис. 4.6, г ). Все грани его – квадраты. Размеры куба определяют три измерения: длину, ширину и высоту, равные между собой.

Построение изображений правильной треугольной призмы (рис. 4.6, д ) следует начинать с основания – равностороннего треугольника. На фронтальной плоскости проекций задняя грань призмы изображается в натуральную величину, две передние – с искажением ширины. На профильной проекции ширина прямоугольника равна высоте фигуры основания призмы. На горизонтальной и фронтальной проекциях проводят осевые линии, на профильной проекции ось симметрии отсутствует. Для правильной треугольной призмы указывают ее высоту, длину стороны основания и угол.

Рис. 4.6.

Построение прямоугольных проекций правильной шестиугольной призмы (рис. 4.6, е ) также начинают с вычерчивания вида сверху, который представляет собой правильный шестиугольник. На главном виде средняя грань изображается в натуральную величину, а ширина боковых граней искажена. На профильной проекции грани изображаются искаженными по ширине. Размеры правильной шестиугольной призмы определяют ее высотой и шириной, равной удвоенной длине стороны основания.

На рис. 4.6, ж приведены три проекции и наглядное изображение правильной четырехугольной пирамиды. Основание ее, параллельное горизонтальной плоскости проекций, проецируется на нее в натуральную величину, т.е. изображается квадратом. Боковые ребра, идущие из вершин основания к вершине пирамиды, изображаются диагоналями. Фронтальная и профильная проекции представляют собой равнобедренные треугольники, высота которых равна высоте пирамиды. На всех проекциях должны быть нанесены оси симметрии. Для правильной четырехугольной пирамиды указывают длины двух сторон основания и высоту.

Аналогичны изображения правильной шестиугольной пирамиды (рис. 4.6, з ). Горизонтальной проекцией ее является правильный шестиугольник с диагоналями, изображающими боковые ребра пирамиды. На фронтальной проекции видны три грани, а на профильной – две. На всех проекциях проводят оси симметрии. Размеры правильной шестиугольной пирамиды определяются ее высотой и шириной, равной удвоенной длине стороны основания.