Постоянная Планка определяет границу между макромиром, где действуют законы механики Ньютона, и микромиром, где действуют законы квантовой механики.

Макс Планк - один из основоположников квантовой механики - пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами (см. Уравнения Максвелла) и атомами и, тем самым, разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах. Энергия, переносимая одним квантом, равна:

где v - частота излучения, а h - элементарный квант действия, представляющий собой новую универсальную константу, получившую вскоре название постоянная Планка. Планк же первым и рассчитал ее значение на основе экспериментальных данных h = 6,548 x 10–34 Дж·с (в системе СИ); по современным данным h = 6,626 x 10–34 Дж·с. Соответственно, любой атом может излучать широкий спектр связанных между собой дискретных частот, который зависит от орбит электронов в составе атома. Вскоре Нильс Бор создаст стройную, хотя и упрощенную модель атома Бора, согласующуюся с распределением Планка.

Опубликовав свои результаты в конце 1900 года, сам Планк - и это видно из его публикаций - сначала не верил в то, что кванты - физическая реальность, а не удобная математическая модель. Однако, когда пять лет спустя Альберт Эйнштейн опубликовал статью, объясняющую фотоэлектрический эффект на основе квантования энергии излучения, в научных кругах формулу Планка стали воспринимать уже не как теоретическую игру, а как описание реального физического явления на субатомном уровне, доказывающее квантовую природу энергии.

Постоянная Планка фигурирует во всех уравнениях и формулах квантовой механики. Она, в частности, определяет масштабы, начиная с которых вступает в силу принцип неопределенности Гейзенберга. Грубо говоря, постоянная Планка указывает нам нижний предел пространственных величин, после которого нельзя не принимать во внимание квантовые эффекты. Для песчинок, скажем, неопределенность произведения их линейного размера на скорость настолько незначительна, что ею можно пренебречь. Иными словами, постоянная Планка проводит границу между макромиром, где действуют законы механики Ньютона, и микромиром, где вступают в силу законы квантовой механики. Будучи получена всего лишь для теоретического описания единичного физического явления, постоянная Планка вскоре стала одной из фундаментальных констант теоретической физики, определяемых самой природой мироздания.

Макс Карл Эрнст Людвиг ПЛАНК

Max Karl Ernst Ludwig Plank, 1858–1947

Немецкий физик. Родился в г. Киль в семье профессора юриспруденции. Будучи пианистом-виртуозом, Планк в юности был вынужден сделать нелегкий выбор между наукой и музыкой (рассказывают, что перед первой мировой войной на досуге пианист Макс Планк часто составлял весьма профессиональный классический дуэт со скрипачом Альбертом Эйнштейном. - Прим. переводчика) Докторскую диссертацию по второму закону термодинамики Планк защитил в 1889 году в Мюнхенском университете - и в том же году стал преподавателем, а с 1892 года - профессором Берлинского университета, где и проработал до своего выхода на пенсию в 1928 году. Планк по праву считается одним из отцов квантовой механики. Сегодня его имя носит целая сеть немецких научно-исследовательских институтов.

изм. от 19.11.2011 г - (добавлена анимация)

Необходимо напомнить, что в модели “Логической физики” Рода Джонсона мы видим следующее:

Нет “твердых частиц”, есть лишь группирования энергии.
каждое квантовое измерение можно геометрически объяснить как форму структурированных, пересекающихся энергетических полей.
атомы – это вращающиеся в противоположных направлениях энергетические формы в виде Платоновых Твердых Тел, а именно вращающиеся в противоположных направлениях октаэдр и тетраэдр . Причем каждая вибрационная/пульсирующая форма соответствует определенной основной плотности эфира.
во всей Вселенной все уровни плотности или измерения структурированы из двух первичных уровней эфира, непрерывно взаимодействующих между собой.

Согласно модели Джонсона, существует , которая непрерывно пересекается с нашей реальностью в каждом атоме, на самом крошечном уровне. Каждый атом обладает одной геометрией в нашей реальности и противоположной, обратной геометрией в параллельной реальности. Две геометрии вращаются в противоположных направлениях внутри друг друга. Каждая стадия этого процесса проводит вас через .

Однако поскольку традиционные ученые еще не визуализировали Платоновы Твердые Тела , загнездованные друг в друге, делящие общую ось и способные вращаться в противоположных направлениях, они утеряли картину квантовой реальности.

Большинство людей уже знает, что тепловое излучение и свет создаются очень простой вещью – движением вспышек электромагнитной энергии, известных как “фотоны”.

Однако до 1900 года считалось, что свет и тепло движутся не в форме дискретных единиц “фотонов”, а гладко, плавно и неразрывно. Физик Макс Планк первым открыл, что на самом крошечном уровне свет и тепло движутся “пульсациями” или “пакетами” энергии, величиной 10 -32 см. (по сравнению с таким размером атомное ядро было бы величиной с планету!)

Интересно, что чем быстрее колебание, тем больше пакеты, и, соответственно, чем медленнее колебание, тем меньше пакеты.

Планк открыл, что отношение между скоростью колебания и размером пакета всегда остается постоянным, независимо от того, как вы их измеряете. Постоянное отношение между скоростью колебания и размером пакета известно как Закон Распределения Вейна.

Планк обнаружил единственное число, выражающее это отношение. Сейчас оно известно как “Постоянная Планка”.

Статья Каролин Хартман (декабрьский 2001 года выпуск журнала Наука и техника 21-го века) посвящена исключительно открытиям Макса Планка. Она раскрывает, что головоломка, созданная его открытиями, остается нерешенной:

“Сегодня, в целях более глубокого проникновения в структуру атома, наш долг – продолжать исследования таких ученых как Кюри, Лиза Мейтнер и Отто Ган.
Но фундаментальные вопросы: Что вызывает движение электронов, подчиняется ли оно определенным геометрическим законам, и почему одни элементы устойчивее, чем другие, еще не имеют ответов и ожидают новых передовых гипотез и идей”.

В этой заметке мы уже можем видеть ответ на вопрос Хартман. Как мы сказали, открытия Планка совершались в результате изучения теплового излучения. Вводный параграф в статье Каролин Хартман – это совершенное описание его достижений:

“Сто лет назад 14 декабря 1900 года физик Макс Планк (1858-1947) объявил об открытии новой формулы излучения, которая могла бы описывать все закономерности, наблюдаемые при нагревании материи, когда она начинает испускать тепло разных цветов.
Причем новая формула основывалась на одном важном допущении - энергия излучения непостоянна, излучение происходит лишь пакетами определенного размера.
Трудность в том, как сделать стоящее за “формулой” допущение физически понятным. Что имеется в виду под “энергетическими пакетами”, которые даже непостоянны, а меняются пропорционально частоте колебания (Закон Распределения Вейна)?”

Немного позже Хартман продолжает:

“Планк знал, когда бы вы ни наталкивались на, по-видимому, неразрешимую проблему в Природе, в ее основе должны лежать более сложные закономерности; другими словами, должна быть иная “геометрия Вселенной”, чем считалось раньше.
Например, Планк всегда настаивал на том, что надежность уравнений Максвелла следует пересмотреть, потому что физика достигла такой стадии развития, на которой так называемые “физические законы” больше не универсальны”.

Зерно работы Планка можно выразить простым уравнением, описывающим, как излучающая материя высвобождает энергию в “пакетах” или вспышках.

Это уравнение Е = hv , где Е – это конечная измеряемая энергия, v – частота вибрации излучения, высвобождающего энергию, и h – известна как “Константа Планка”, регулирующая “поток” между v и E .

Константа Планка равна 6,626 . Это отвлеченное выражение, поскольку выражает чистое отношение между двумя величинами и не нуждается в присвоении любой определенной категории измерения, иной, чем эта.

Планк открыл эту константу не чудом, скорее он скрупулезно вывел ее посредством изучения многих разных видов теплового излучения.

Это первая главная тайна, которую проясняет Джонсон в своем исследовании. Он напоминает, что для измерения константы Планка используется (прямоугольная) система координат Декарта.

Эта система названа по имени ее создателя Рене Декарта и означает, что для измерения трехмерного пространства используются кубы.

Она стала настолько привычной, что большинство ученых даже не считают ее чем-то необычным - просто длина, ширина и высота.

В экспериментах, таких как эксперименты Планка, для измерения энергии, движущейся через определенную область пространства, используется маленький куб. В системе измерений Планка в целях простоты этому кубу был естественно присвоен объем “единицы” .

Однако когда Планк писал свою константу, он не хотел иметь дело с десятичным числом, поэтому он сдвинул объем куба до 10. Это сделало константу равной 6,626 вместо 0,6626 .

По-настоящему важным было отношение между чем-то, находящимся внутри куба (6,626), и самим кубом (10).

Не имеет значения, присваиваете ли вы кубу объем единицы, десяти или любого другого числа, поскольку отношение всегда остается постоянным. Как мы говорили, Планк разгадал постоянную природу этого отношения лишь посредством скрупулезных многолетних экспериментов.

Помните, что в зависимости от размера высвобождаемого пакета вам понадобиться измерять его кубом разного размера.

И все же, что бы ни находилось внутри куба, оно всегда будет иметь 6,626 единиц объема куба, если объем самого куба 10 единиц, независимо от вовлеченных в процесс размеров.

Прямо сейчас следует отметить - величина 6,626 очень близка к 6,666 , что составляет ровно 2/3 от 10 . Поэтому следовало бы спросить: “Почему так важны 2/3 ?”

Основываясь на простых измеряемых геометрических принципах, объясненных Фуллером и другими, мы знаем, что если тетраэдр совершенно разместить внутри сферы, он будет заполнять ровно 1/3 общего объема сферы. То есть 3,333 от 10.

На самом деле фотон состоит из двух соединенных вместе тетраэдров , что мы и видим на рисунке.

Общий объем (энергии), движущейся через куб, будет ровно 2/3 (6,666) общего объема куба, которому Планк присвоил число 10.

Бакминстер Фуллер первым открыл, что фотон составлен двумя тетраэдрами. Он объявил об этом миру в 1969 году на Planet Planning , после чего это было полностью забыто.

Небольшая разница 0,040 между “чистым” 6,666 или отношением 2/3 и константой Планка 6,626 создается удельной емкостью вакуума , который поглощает некоторое количество энергии.

Удельную емкость вакуума можно точно вычислить с помощью того, что известно как уравнение Кулона.

Выражаясь более простыми терминами, энергия эфира “физического вакуума” будет поглощать небольшое количество любой проходящей через него энергии.

Поэтому, как только мы учитываем уравнение Кулона, числа работают совершенно. Более того, если мы измеряем пространство, пользуясь тетраэдральными координатами вместо кубических, необходимость в уравнении Планка Е = hv отпадает. В этом случае энергия будет измеряться одинаково на обеих сторонах уравнения, то есть Е (энергия) будет равна v (частоте), и “константа” между ними не нужна.

“Пульсации” энергии, продемонстрированные константой Планка, известны квантовым физикам как “фотоны”. Обычно мы думаем о “фотонах” как о носителях света, но это лишь одна из их функций.

Важнее, что когда атомы поглощают или высвобождают энергию, она передается в форме “фотонов”.

Исследователи, такие как Мило Вольф, напоминают: единственное, что мы точно знаем о термине “фотон”, - он является импульсом, проходящим через эфир/энергетическое поле нулевой точки.

Сейчас можно видеть, что эта информация содержит геометрический компонент, что дает основание полагать, что и атомы должны обладать той же геометрией.

Еще одной открытой аномалией, демонстрирующей присутствие геометрии на квантовом уровне, является Теорема Неравномерности Белла.

В данном случае два фотона высвобождаются в противоположных направлениях. Каждый фотон испускается из отдельной возбужденной атомной структуры. Обе атомные структуры состоят из идентичных атомов, и обе распадаются с одинаковой скоростью.

Это позволяет двум “спаренным” фотонам с одинаковыми энергетическими качествами одновременно высвобождаться в противоположных направлениях. Затем оба фотона проходят через поляризационные фильтры, такие как зеркала, что теоретически должно изменить направление движения.

Если одно зеркало расположено под углом 45 o , а другое под углом 30 o , было бы естественно ожидать, что угловые повороты фотонов будут разными.

Однако когда выполнялся этот эксперимент, несмотря на разницу в углах зеркал, фотоны одновременно совершили одинаковый угловой поворот!

Степень точности эксперимента ошеломляет, что описывается в книге Мило Вольфа:

“В самом последнем эксперименте Элейна Аспекта для полного устранения любой возможности местных влияний одного детектора на другой Дэлибард и Роджер пользовались акустико-оптическими переключателями на частоте 50 мГц, сдвигающими наборы поляризаторов во время полета фотонов…

Теорема Белла и результаты эксперимента свидетельствуют о том, что части Вселенной связаны между собой на каком-то внутреннем уровне (то есть, не очевидном для нас), и эти связи фундаментальны (квантовая теория фундаментальна).

Как мы можем их понять? И хотя проблема анализировалась очень глубоко (Вилер и Зурек, 1983; д’Эспанья, 1983; Герберт, 1985; Стап, 1982; Бом и Хили, 1984; Пэйджелс, 1982; и другие), решение не найдено.

Авторы склонны согласиться со следующим описанием нелокальных связей:
1. Они связывают события в отдельных местах без известных полей или материи.
2. Они не ослабляются с расстоянием; будь то миллион километров или сантиметр.
3. Представляется, что они распространяются быстрее, чем скорость света”.

Бесспорно, в рамках науки это весьма озадачивающий феномен.

Теорема Белла гласит: энергетически спаренные “фотоны” реально удерживаются вместе единственной геометрической силой, а именно тетраэдром, продолжающим расширяться (становиться больше) при разделении фотонов.

Так как геометрия между ними расширяется, фотоны будут продолжать сохранять одинаковое угловое фазовое положение относительно друг друга.

Cледующий пункт исследования – сама электромагнитная волна.

Как знает большинство людей, электромагнитная волна имеет два компонента – электростатическую волну и магнитную волну, которые движутся вместе. Интересно, что две волны всегда перпендикулярны друг другу.

Для визуализации происходящего Джонсон просит взять два карандаша одинаковой длины и установить их перпендикулярно друг другу; причем расстояние между ними должно равняться длине карандаша:

Теперь мы можем соединить каждый конец верхнего карандаша с каждым концом нижнего карандаша. Сделав это, мы получим четырехсторонний объект, составленный равносторонними треугольниками между двумя карандашами, то есть тетраэдр.

Тот же процесс можно проделать с электромагнитной волной, приняв общую высоту электростатической или магнитной волны (которые обладают одинаковой высотой или амплитудой) за основную длину, как у карандашей на рисунке.

На рисунке ниже можно видеть, что если мы соединим линии, пользуясь тем же процессом, электромагнитная волна на самом деле копирует “скрытый” (потенциальный) тетраэдр:

Здесь важно упомянуть, что этот секрет неоднократно открывался разными мыслителями лишь для того, чтобы снова оказаться забытым наукой.

Работа Тома Бирдена убедительно показала, что Джеймс Клерк Максвелл знал об этом, когда писал свои сложные “кватернионные” уравнения.

Скрытый тетраэдр наблюдается и у Уолтера Расселла, а позже у Бакминстера Фуллера. Совершая свои открытия, Джонсон не знал о предыдущих прорывах.

Следующее положение, которое нужно рассмотреть, – это спин *. Много лет физики знали, что, двигаясь, энергетические частицы “вращаются”.
* cпин (spin, - вращение), собственно момент количества движения микрочастицы, имеющий квантовую природу и не связанный с движением частицы как целого; измеряется в единицах постоянной Планка и может быть целым (0, 1, 2,...) или полуцелым (1/2, 3/2,...)

Например, представляется, что, двигаясь в атоме, “электроны” непрерывно совершают резкие повороты на 180 o или “полуспины”.

Часто наблюдают, что при движении “кварки” совершают “1/3” или “2/3” спина, что позволило Гелл-Манну организовать их движения в тетраэдр или другие геометрии.

Никто из представителей традиционной науки не дал адекватного объяснения, почему это происходит.

Модель Джонсона показывает, что 180 o “спин” электронных облаков создается движением октаэдра.

Важно осознать, что 180 o движение на самом деле возникает из двух 90 o поворотов каждого октаэдра.

Чтобы оставаться в том же положении в матрице окружающей его геометрии, октаэдр должен “опрокинуться назад”, то есть на 180 o .

Тетраэдр же, чтобы остаться в том же положении, должен совершить либо 120 o (1/3 спина), либо 240 o (2/3 спина) вращения. Этим же процессом объясняется и загадка спиралевидного движения торсионных волн. Где бы вы ни находились во Вселенной, даже “в вакууме”, эфир всегда будет пульсировать в этих геометрических формах, образуя матрицу.

Поэтому любой движущийся в эфире импульс момента будет проходить по граням геометрических “жидких кристаллов” в эфире.

Следовательно, спиралевидное движение торсионной волны создается простой геометрией, через которую волна должна пройти при движении.

ТОНКОСТРУКТУРНАЯ КОНСТАНТА

Визуализировать тонкоструктурную константу труднее, чем предыдущие константы.

Мы включили этот раздел для тех, кому хотелось бы видеть, насколько далеко заходит “матричная” модель. Тонкоструктурная константа – это еще один аспект квантовой физики, о котором даже не слышали некоторые представители традиционной науки, возможно, потому, что она абсолютно необъяснима тем, кто склонен верить в модели, основанные на частицах.

Представьте, что электронное облако похоже на гибкий резиновый шар, и каждый раз, когда поглощается или высвобождается “фотон” энергии (что известно как спаривание), облако растягивается и изгибается, как будто дрожит.

Электронное облако всегда будет “ударяться” в фиксированном, точном пропорциональном отношении к размеру фотона.

Это значит, что фотоны большего размера будут оказывать большие “удары” на электронное облако, фотоны меньшего размера оказывают меньшие “удары” на электронное облако. Это отношение остается постоянным, несмотря на единицы измерения.

Как и постоянная Планка, тонкоструктурная константа – это еще одно “отвлеченное” число. Это значит, что мы будем получать одну и ту же пропорцию, независимо от того, в каких единицах мы ее измеряем.

Эта константа непрерывно изучалась посредством спектроскопического анализа, и в своей книге Странная теория света и материи физик Ричард П. Фейнман объяснил эту загадку. (Следует помнить, что слово “спаривание” означает соединение или разделение фотона и электрона.)

"Есть очень глубокий и красивый вопрос, связанный с наблюдаемой константой спаривания e , - амплитудой реального электрона для испускания или поглощения реального фотона. Это простое экспериментально определенное число близко к 0,08542455 .
Физикам больше нравится запоминать это число как инверсию его квадрата – около 137,03597 с неопределенностью двух последних десятичных знаков.
Оно остается загадкой и сегодня, хотя было открыто более 50 лет назад.
Вам сразу же захотелось бы узнать, откуда пришло число спаривания: связано ли оно с π или, возможно, с основанием натуральных логарифмов?
Этого не знает никто, это одна из самых великих загадок физики - магическое число, пришедшее к нам и не понятное человеку.
Мы знаем, какой вид танца следует практиковать для очень точного измерения этого числа, но мы не знаем, какой вид танца следует исполнять на компьютере, чтобы вышло это число, не делая из этого секрета".

В модели Джонсона проблема тонкоструктурной константы имеет очень простое академическое решение.

Как мы говорили, фотон движется по двум соединенным вместе тетраэдрам, а электростатическая сила внутри атома поддерживается октаэдром.

Мы получаем тонкоструктурную константу простым сравнением объемов тетраэдра и октаэдра при их соударении . Все, что мы делаем, - это делим объем вписанного в сферу тетраэдра на объем вписанного в сферу октаэдра. Мы получаем тонкоструктурную константу как разницу между ними. Чтобы показать, как это делается, требуется некоторое дополнительное объяснение.

Поскольку тетраэдр полностью треугольный, независимо от того, как он вращается, три вершины любой из его граней будут делить окружность на три равные части по 120 o каждая.

Поэтому для приведения тетраэдра в равновесие с геометрией окружающей его матрицы вам нужно повернуть его всего на 120 o , чтобы он оказался в том же положении, что и раньше.

Это легко видеть, если вы визуализируете автомобиль с треугольными колесами и хотите, чтобы он сдвигался так, чтобы колеса выглядели как раньше. Для этого каждое треугольное колесо должно повернуться ровно на 120 o .

В случае октаэдра, для восстановления равновесия его всегда приходится переворачивать “вверх дном” или на 180 o .

Если вам понравилась аналогия с автомобилем, тогда колеса должны иметь форму классического ромба.

Чтобы ромб выглядел так же, как в начале, вам придется перевернуть его вверх дном, то есть на 180 o .

Нижеприведенная цитата из Джонсона объясняет тонкоструктурную константу, основываясь именно на этой информации:

“(Если вы) рассматриваете статическое электрическое поле как октаэдр, а динамическое магнитное поле как тетраэдр, тогда геометрическое отношение (между ними) равно 180:120.

Если вы рассматриваете их как сферы с объемами, выраженными в радианах, просто разделите объемы друг на друга, и вы получите тонкоструктурную константу”.

Термин “объем в радианах” означает, что вы вычисляете объем объекта через его радиус, представляющий половину ширины объекта.

Интересно: после того, как Джонсон показал, что тонкоструктурную константу можно рассматривать как отношение между октаэдром и тетраэдром, как энергию, движущуюся от одного к другому, Джерри Юлиано открыл, что ее можно рассматривать как “остаточную” энергию, возникающую тогда, когда мы сжимаем сферу в куб или расширяем куб в сферу!

Такие изменения расширения и сжатия между двумя объектами известны как “мозаичное размещение”, и вычисления Юлиано выполнить нетрудно, просто никто не додумался сделать это раньше.

В вычислениях Юлиано объем двух объектов не меняется; и куб, и сфера имеют объем 8π·π 2 .

Если мы сравниваем их друг с другом, разница лишь в величине площади поверхности. Дополнительная площадь поверхности между кубом и сферой равна тонкоструктурной константе.

Вы спросите: “Как тонкоструктурная константа может быть одновременно и отношением между октаэдром и тетраэдром и отношением между кубом и сферой?”

Это работа еще одного аспекта магии “симметрии”, где мы видим, что разные геометрические формы могут обладать одинаковыми свойствами, поскольку все они гнездятся одна в другой с совершенными гармоническими отношениями.

Точки зрения и Джонсона и Юлиано демонстрируют, что мы имеем дело с работой геометрически структурированной энергии в атоме.

Также важно помнить, что открытия Юлиано демонстрируют классическую геометрию “квадратуры круга”.

Это положение долго являлось центральным элементом в эзотерических традициях “сакральной геометрии”, поскольку считалось, что оно показывает равновесие между физическим миром, представленным квадратом или кубом, и духовным миром, представленным кругом или сферой.

И сейчас можно видеть, что это еще один пример “скрытого знания”, зашифрованного в метафоре так, чтобы со временем люди восстановили истинное понимание стоящей за метафорой секретной науки.

Они знали, что пока мы не откроем тонкоструктурную константу, мы не поймем, что наблюдаем. Именно поэтому было сохранено это древнее знание - чтобы показать нам ключ.

А ключ в том, что в квантовой реальности всегда присутствовала сакральная геометрия ; просто до настоящего времени она оставалась необъясненной, поскольку традиционная наука продолжает пребывать в оковах старомодных моделей “частиц”.

В этой модели больше не нужно ограничивать атомы определенным размером; они способны расширяться и сохранять одни и те же свойства.

Как только мы поймем, что происходит в квантовой сфере, мы сможем создавать сверхпрочные и сверхлегкие материалы, поскольку сейчас известны точные геометрические расположения, вынуждающие атомы связываться эффективнее.

Говорили, что кусочки обломков крушения в Розвеле были невероятно легкими и одновременно такими прочными, что их нельзя было разрезать, сжечь или разрушить. Именно такие материалы мы сможем создавать, как только полностью поймем новую квантовую физику.

Мы помним, что квазикристаллы очень хорошо хранят тепло, часто не проводят электричество, даже если входящие в их состав металлы в естественном виде хорошие проводники.

Аналогично, микрокластеры не позволяют магнитным полям проникать внутрь самих кластеров.

Физика Джонсона утверждает, что такая геометрически совершенная структура обладает совершенной связью, поэтому через нее не может пройти ни тепловая, ни электромагнитная энергия. Внутренняя геометрия настолько компактна и точна, что току буквально не остается “места” для движения между молекулами.


; h = 4,135 667 662(25) × 10 −15 эВ · .

Часто применяется величина ℏ ≡ h 2 π {\displaystyle \hbar \equiv {\frac {h}{2\pi }}} :

ħ = 1,054 571 800(13) × 10 −34 Дж · ; ħ = 1,054 571 800(13) × 10 −27 эрг · ; ħ = 6,582 119 514(40) × 10 −16 эВ · ,

называемая редуцированной (иногда рационализированной или приведённой) постоянной Планка или постоянной Дирака . Применение этого обозначения упрощает многие формулы квантовой механики, так как в эти формулы традиционная постоянная Планка входит в виде деленной на константу 2 π {\displaystyle {2\pi }} .

Физический смысл

В квантовой механике импульс имеет физический смысл волнового вектора [ ] , энергия - частоты, а действие - фазы волны, однако традиционно (исторически) механические величины измеряются в других единицах (кг·м/с, Дж, Дж·с), чем соответствующие волновые (м −1 , с −1 , безразмерные единицы фазы). Постоянная Планка играет роль переводного коэффициента (всегда одного и того же), связывающего эти две системы единиц - квантовую и традиционную:

p = ℏ k (| p | = 2 π ℏ / λ) {\displaystyle \mathbf {p} =\hbar \mathbf {k} \,\,\,(|\mathbf {p} |=2\pi \hbar /\lambda)} (импульс), E = ℏ ω {\displaystyle E=\hbar \omega } (энергия), S = ℏ ϕ {\displaystyle S=\hbar \phi } (действие).

Если бы система физических единиц формировалась уже после возникновения квантовой механики и приспосабливалась для упрощения основных теоретических формул, константа Планка вероятно просто была бы сделана равной единице, или, во всяком случае, более круглому числу. В теоретической физике очень часто для упрощения формул используется система единиц с ℏ = 1 {\displaystyle \hbar =1} , в ней

p = k (| p | = 2 π / λ) , {\displaystyle \mathbf {p} =\mathbf {k} \,\,\,(|\mathbf {p} |=2\pi /\lambda),} E = ω , {\displaystyle E=\omega ,} S = ϕ , {\displaystyle S=\phi ,} (ℏ = 1) . {\displaystyle (\hbar =1).}

Постоянная Планка имеет и простую оценочную роль в разграничении областей применимости классической и квантовой физики: она в сравнении с величиной характерных для рассматриваемой системы величин действия или момента импульса , или произведений характерного импульса на характерный размер, или характерной энергии на характерное время, показывает, насколько применима к данной физической системе классическая механика . А именно, если S {\displaystyle S} - действие системы, а M {\displaystyle M} - её момент импульса, то при S ℏ ≫ 1 {\displaystyle {\frac {S}{\hbar }}\gg 1} или M ℏ ≫ 1 {\displaystyle {\frac {M}{\hbar }}\gg 1} поведение системы с хорошей точностью описывается классической механикой. Эти оценки достаточно прямо связаны с соотношениями неопределённостей Гейзенберга .

История открытия

Формула Планка для теплового излучения

Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u (ω , T) {\displaystyle u(\omega ,T)} . Формула Планка была получена после того, как стало ясно, что формула Рэлея - Джинса удовлетворительно описывает излучение только в области длинных волн. В 1900 году Планк предложил формулу с постоянной (впоследствии названной постоянной Планка), которая хорошо согласовывалась с экспериментальными данными. При этом Планк полагал, что данная формула является всего лишь удачным математическим трюком, но не имеет физического смысла. То есть Планк не предполагал, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с циклической частотой излучения выражением:

ε = ℏ ω . {\displaystyle \varepsilon =\hbar \omega .}

Коэффициент пропорциональности ħ впоследствии назвали постоянной Планка , ħ ≈ 1,054⋅10 −34 Дж·с .

Фотоэффект

Фотоэффект - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Озеена , получил Нобелевскую премию) на основе гипотезы Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза - если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

ℏ ω = A o u t + m v 2 2 , {\displaystyle \hbar \omega =A_{out}+{\frac {mv^{2}}{2}},}

где A o u t {\displaystyle A_{out}} - т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), m v 2 2 {\displaystyle {\frac {mv^{2}}{2}}} - кинетическая энергия вылетающего электрона, ω {\displaystyle \omega } - частота падающего фотона с энергией ℏ ω , {\displaystyle \hbar \omega ,} ℏ {\displaystyle \hbar } - постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта , то есть существование наименьшей частоты, ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из тела. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества, то есть на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

Эффект Комптона

Методы измерения

Использование законов фотоэффекта

При данном способе измерения постоянной Планка используется закон Эйнштейна для фотоэффекта:

K m a x = h ν − A , {\displaystyle K_{max}=h\nu -A,}

где K m a x {\displaystyle K_{max}} - максимальная кинетическая энергия вылетевших с катода фотоэлектронов,

ν {\displaystyle \nu } - частота падающего света, A {\displaystyle A} - т. н. работа выхода электрона.

Измерение проводится так. Сначала катод фотоэлемента облучают монохроматическим светом с частотой ν 1 {\displaystyle \nu _{1}} , при этом на фотоэлемент подают запирающее напряжение, так, чтобы ток через фотоэлемент прекратился. При этом имеет место следующее соотношение, непосредственно вытекающее из закона Эйнштейна:

h ν 1 = A + e U 1 , {\displaystyle h\nu _{1}=A+eU_{1},}

где e {\displaystyle e} -

постоянная планка, чему равна постоянная планка
Постоя́нная Пла́нка (квант действия) - основная константа квантовой теории, коэффициент, связывающий величину энергии кванта электромагнитного излучения с его частотой, так же как и вообще величину кванта энергии любой линейной колебательной физической системы с её частотой. Связывает энергию и импульс с частотой и пространственной частотой, действия с фазой. Является квантом момента импульса. Впервые упомянута Планком в работе, посвящённой тепловому излучению, и потому названа в его честь. Обычное обозначение - латинское. Дж·c эрг·c. эВ·c.

Часто применяется величина:

Дж·c, эрг·c, эВ·c,

называемая редуцированной (иногда рационализированной или приведённой) постоянной Планка или постоянной Дирака. Применение этого обозначения упрощает многие формулы квантовой механики, так как в эти формулы традиционная постоянная Планка входит в виде деленной на константу.

На 24-й Генеральной конференции по мерам и весам 17-21 октября 2011 года была единогласно принята резолюция, в которой, в частности, предложено в будущей ревизии Международной системы единиц (СИ) переопределить единицы измерений СИ таким образом, чтобы постоянная Планка была равной точно 6,62606X·10−34 Дж·с, где Х заменяет одну или более значащих цифр, которые будут определены в дальнейшем на основании наиболее точных рекомендаций CODATA. этой же резолюции предложено таким же образом определить как точные значения постоянную Авогадро, элементарный заряд и постоянную Больцмана.

  • 1 Физический смысл
  • 2 История открытия
    • 2.1 Формула Планка для теплового излучения
    • 2.2 Фотоэффект
    • 2.3 Эффект Комптона
  • 3 Методы измерения
  • 4 Примечания
  • 5 Литература
  • 6 Ссылки

Физический смысл

В квантовой механике импульс имеет физический смысл волнового вектора, энергия - частоты, а действие - фазы волны, однако традиционно (исторически) механические величины измеряются в других единицах (кг·м/с, Дж, Дж·с), чем соответствующие волновые (м−1, с−1, безразмерные единицы фазы). Постоянная Планка играет роль переводного коэффициента (всегда одного и того же), связывающего эти две системы единиц - квантовую и традиционную:

(импульс) (энергия) (действие)

Если бы система физических единиц формировалась уже после возникновения квантовой механики и приспосабливалась для упрощения основных теоретических формул, константа Планка вероятно просто была бы сделана равной единице, или, во всяком случае, более круглому числу. теоретической физике очень часто для упрощения формул используется система единиц с, в ней

.

Постоянная Планка имеет и простую оценочную роль в разграничении областей применимости классической и квантовой физики: она в сравнении с величиной характерных для рассматриваемой системы величин действия или момента импульса, или произведений характерного импульса на характерный размер, или характерной энергии на характерное время, показывает, насколько применима к данной физической системе классическая механика. А именно, если - действие системы, а - её момент импульса, то при или поведение системы с хорошей точностью описывается классической механикой. Эти оценки достаточно прямо связаны с соотношениями неопределенностей Гейзенберга.

История открытия

Формула Планка для теплового излучения

Основная статья: Формула Планка

Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения. Формула Планка была получена после того, как стало ясно, что формула Рэлея - Джинса удовлетворительно описывает излучение только в области длинных волн. 1900 году Планк предложил формулу с постоянной (впоследствии названной постоянной Планка), которая хорошо согласовывалась с экспериментальными данными. При этом Планк полагал, что данная формула является всего лишь удачным математическим трюком, но не имеет физического смысла. То есть Планк не предполагал, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности впоследствии назвали постоянной Планка , = 1.054·10−34 Дж·с.

Фотоэффект

Основная статья: Фотоэффект

Фотоэффект - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Озеена, получил Нобелевскую премию) на основе гипотезы Планка о квантовой природе света. работе Эйнштейна содержалась важная новая гипотеза - если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

где - т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), - кинетическая энергия вылетающего электрона, - частота падающего фотона с энергией, - постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже не достаточно для того, чтобы «выбить» электрон из тела. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества, то есть на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

Эффект Комптона

Основная статья: Эффект Комптона

Методы измерения

Использование законов фотоэффекта

При данном способе измерения постоянной Планка используется закон Эйнштейна для фотоэффекта:

где - максимальная кинетическая энергия вылетевших с катода фотоэлектронов,

Частота падающего света, - т. н. работа выхода электрона.

Измерение проводится так. Сначала катод фотоэлемента облучают монохроматическим светом с частотой, при этом на фотоэлемент подают запирающее напряжение, так, чтобы ток через фотоэлемент прекратился. При этом имеет место следующее соотношение, непосредственно вытекающее из закона Эйнштейна:

где - заряд электрона.

Затем тот же фотоэлемент облучают монохроматическим светом с частотой и точно также запирают его с помощью напряжения

Почленно вычитая второе выражение из первого, получаем

откуда следует

Анализ спектра тормозного рентгеновского излучения

Этот способ считается самым точным из существующих. Используется тот факт, что частотный спектр тормозного рентгеновского излучения имеет точную верхнюю границу, называемую фиолетовой границей. Её существование вытекает из квантовых свойств электромагнитного излучения и закона сохранения энергии. Действительно,

где - скорость света,

Длина волны рентгеновского излучения, - заряд электрона, - ускоряющее напряжение между электродами рентгеновской трубки.

Тогда постоянная Планка равна

Примечания

  1. 1 2 3 4 Fundamental Physical Constants - Complete Listing
  2. On the possible future revision of the International System of Units, the SI. Resolution 1 of the 24th meeting of the CGPM (2011).
  3. Agreement to tie kilogram and friends to fundamentals - physics-math - 25 October 2011 - New Scientist

Литература

  • John D. Barrow. The Constants of Nature; From Alpha to Omega - The Numbers that Encode the Deepest Secrets of the Universe. - Pantheon Books, 2002. - ISBN 0-37-542221-8.
  • Steiner R. History and progress on accurate measurements of the Planck constant // Reports on Progress in Physics. - 2013. - Vol. 76. - P. 016101.

Ссылки

  • Ю. К. Земцов, Курс лекций по атомной физике, анализ размерностей
  • История уточнения постоянной Планка
  • The NIST Reference on Constants, Units and Uncertainty

постоянная планка, чему равна постоянная планка

Постоянная Планка Информацию О

Памятный знак Максу Планку в честь открытия им постоянной Планка, на фасаде Гумбольдтивського университета, Берлин. Надпись гласит: «В этом здании преподавал Макс Планк, который изобрел элементарный квант действия h, с 1889 по 1928». – элементарный квант действия, фундаментальная физическая величина, отражающая квантовую природу Вселенной. Общий момент количества движения физической системы может изменяться только кратно величине постоянной Планка. Как насликок в квантовой механике физические величины выражаются через постоянную Планка.
Постоянная Планка обозначается латинской буквой h. Она имеет размерность энергии, умноженной на время.
Чаще используется сводная постоянная Планка

Кроме того, что она удобна для использования в формулах квантовой механики, он имеет особое обозначение, ни с чем не спутаешь.
В системе СИ постоянная Планка имеет следующее значение:
Для расчетов в квантовой физике удобнее использовать значение сводной постоянной Планка, выраженное через электронвольт.
Макс Планк ввел свою постоянную для объяснения спектра излучения абсолютно черного тела, предположив, что тело излучает электромагнитные волны порциями (квантами) с энергией, пропорциональной частоте (h ?). В 1905 году Эйнштейн использовал это предположение для того, чтобы объяснить явление фотоэффекта, постулируя, что электромагнитные волны поглощаются порциями с энергией пропорциональной частоте. Так зародилась квантовая механика, в справедливости которой оба лауреаты Нобелевской премии сомневались всю жизнь.