Решетка сбоку выглядит подобным образом.

Применение также находят отражательные решетки , которые получены нанесением алмазным резцом на полированную поверхность металла тонких штрихов. Отпечатки на желатине или пластике после такой гравировки называют репликами , но такие дифракционные решетки обычно низкого качества, поэтому применение их ограничено. Хорошими отражательными решетками считаются такие, у которых полная длина составляет около 150 мм , при общем количестве штрихов - 600 шт/мм.

Основные характеристики дифракционной решетки - это общее число штрихов N, густота штриховки n (количество штрихов, приходящееся на 1 мм) и период (постоянная) решетки d, который можно найти как d = 1/n.

Решетка освещена одним фронтом волны и ее N прозрачных штрихов принято рассматривать в качестве N когерентных источников .

Если вспомнить явление интерференции от многих одинаковых источников света, то интенсивность света выражается согласно закономерности:

где i 0 - интенсивность световой волны, которая прошла через одну щель

Исходя из понятия максимальной интенсивности волны , полученного из условия:

β = mπ при m = 0, 1, 2… и т.д.

.

Перейдем от вспомогательного угла β к пространственному углу наблюдения Θ, и тогда:

(π d sinΘ)/ λ = m π,

Главные максимумы появляются при условии:

sinΘ м = m λ/ d, при m = 0, 1, 2… и т.д.

Интенсивность света в главных максимумах можно найти согласно формуле:

I м = N 2 i 0 .

Поэтому нужно изготавливать решетки с малым периодом d, тогда существует возможность получения больших углов рассеяния лучей и широкой дифракционной картины.

Например:

На продолжении предыдущего примера рассмотрим случай, когда в первом максимуме красные лучи (λ кр = 760 нм) отклонятся на угол Θ к = 27 °, а фиолетовые (λ ф = 400 нм) отклонятся на угол Θ ф = 14 °.

Видно, что при помощи дифракционной решетки существует возможность измерения длины волны того или другого цвета . Для этого просто нужно знать период решетки и измерить угол, но который отклонился луч, соответствующим необходимому свету.

Одними из известных эффектов, которые подтверждают волновую природу света, являются дифракция и интерференция. Главная область их применения — спектроскопия, в которой для анализа спектрального состава электромагнитного излучения используют дифракционные решетки. Формула, которая описывает положение главных максимумов, даваемых этой решеткой, рассматривается в данной статье.

Прежде чем рассматривать вывод формулы дифракционной решетки, следует познакомиться с явлениями, благодаря которым это решетка оказывается полезной, то есть с дифракцией и интерференцией.

Дифракция — это процесс изменения движения волнового фронта, когда на своем пути он встречает непрозрачное препятствие, размеры которого сравнимы с длиной волны. Например, если через маленькое отверстие пропустить солнечный свет, то на стене можно наблюдать не маленькую светящуюся точку (что должно было произойти, если бы свет распространялся по прямой линии), а светящееся пятно некоторых размеров. Этот факт свидетельствует о волновой природе света.

Интерференция — еще одно явление, которое характерно исключительно для волн. Его суть заключается в наложении волн друг на друга. Если волновые колебания от нескольких источников согласованы (являются когерентными), тогда можно наблюдать устойчивую картину из чередующихся светлых и темных областей на экране. Минимумы на такой картине объясняются приходом волн в данную точку в противофазе (pi и -pi), а максимумы являются результатом попадания в рассматриваемую точку волн в одной фазе (pi и pi).

Оба описанных явления впервые объяснил англичанин Томас Юнг, когда исследовал дифракцию монохроматического света на двух тонких щелях в 1801 году.

Принцип Гюйгенса-Френеля и приближения дальнего и ближнего полей

Математическое описание явлений дифракции и интерференции является нетривиальной задачей. Нахождение точного ее решения требует выполнение сложных расчетов с привлечением максвелловской теории электромагнитных волн. Тем не менее в 20-е годы XIX века француз Огюстен Френель показал, что, используя представления Гюйгенса о вторичных источниках волн, можно с успехом описывать эти явления. Эта идея привела к формулировке принципа Гюйгенса-Френеля, который в настоящее время лежит в основе вывода всех формул для дифракции на препятствиях произвольной формы.

Тем не менее даже с помощью принципа Гюйгенса-Френеля решить задачу дифракции в общем виде не удается, поэтому при получении формул прибегают к некоторым приближениям. Главным из них является плоский волновой фронт. Именно такая форма волны должна падать на препятствие, чтобы можно было упростить ряд математических выкладок.

Следующее приближение заключается в положении экрана, куда проецируется дифракционная картина, относительно препятствия. Это положение описывается числом Френеля. Оно вычисляется так:

Где a — геометрические размеры препятствия (например, щели или круглого отверстия), λ — длина волны, D — дистанция между экраном и препятствием. Если для конкретного эксперимента F<<1 (<0,001), тогда говорят о приближении дальнего поля. Соответствующая ему дифракция носит фамилию Фраунгофера. Если же F>1, тогда имеет место приближение ближнего поля или дифракция Френеля.

Разница между дифракциями Фраунгофера и Френеля заключается в различных условиях для явления интерференции на маленьком и большом расстояниях от препятствия.

Вывод формулы главных максимумов дифракционной решетки, который будет приведен далее в статье, предполагает рассмотрение дифракции Фраунгофера.

Дифракционная решетка и ее виды

Эта решетка представляет собой пластинку из стекла или прозрачного пластика размером в несколько сантиметров, на которую нанесены непрозрачные штрихи одинаковой толщины. Штрихи расположены на постоянном расстоянии d друг от друга. Это расстояние носит название периода решетки. Две других важных характеристики прибора — это постоянная решетки a и число прозрачных щелей N. Величина a определяет количество щелей на 1 мм длины, поэтому она обратно пропорциональна периоду d.

Существует два типа дифракционных решеток:

  • Прозрачная, которая описана выше. Дифракционная картина от такой решетки возникает в результате прохождения через нее волнового фронта.
  • Отражающая. Она изготавливается с помощью нанесения маленьких бороздок на гладкую поверхность. Дифракция и интерференция от такой пластинки возникают за счет отражения света от вершин каждой бороздки.

Какой бы ни был тип решетки, идея ее воздействия на волновой фронт заключается в создании периодического возмущения в нем. Это приводит к образованию большого количества когерентных источников, результатом интерференции которых является дифракционная картина на экране.

Основная формула дифракционной решетки

Вывод этой формулы предполагает рассмотрение зависимости интенсивности излучения от угла его падения на экран. В приближении дальнего поля получается следующая формула для интенсивности I(θ):

I(θ) = I 0 *(sin(β)/β)2*2, где

α = pi*d/λ*(sin(θ) — sin(θ 0));

β = pi*a/λ*(sin(θ) — sin(θ 0)).

В формуле ширина щели дифракционной решетки обозначается символом a. Поэтому множитель в круглых скобках отвечает за дифракцию на одной щели. Величина d — это период дифракционной решетки. Формула показывает, что множитель в квадратных скобках, где появляется этот период, описывает интерференцию от совокупности щелей решетки.

Пользуясь приведенной формулой, можно рассчитать значение интенсивности для любого угла падения света.

Если находить значение максимумов интенсивности I(θ), то можно прийти к выводу, что они появляются при условии, что α = m*pi, где m является любым целым числом. Для условия максимумов получаем:

m*pi = pi*d/λ*(sin(θ m) — sin(θ 0)) =>

sin(θ m) — sin(θ 0) = m*λ/d.

Полученное выражение называется формулой максимумов дифракционной решетки. Числа m — это порядок дифракции.

Другие способы записи основной формулы для решетки

Заметим, что в приведенной в предыдущем пункте формуле присутствует член sin(θ 0). Здесь угол θ 0 отражает направление падения фронта световой волны относительно плоскости решетки. Когда фронт падает параллельно этой плоскости, то θ 0 = 0o. Тогда получаем выражение для максимумов:

Поскольку постоянная решетки a (не путать с шириной щели) обратно пропорциональна величине d, то через постоянную дифракционной решетки формула выше перепишется в виде:

Чтобы не возникало ошибок при подстановке конкретных чисел λ, a и d в эти формулы, следует всегда использовать соответствующие единицы СИ.

Понятие об угловой дисперсии решетки

Будем обозначать эту величину буквой D. Согласно математическому определению, она записывается следующим равенством:

Физический смысл угловой дисперсии D заключается в том, что она показывает, на какой угол dθ m сместится максимум для порядка дифракции m, если изменить длину падающей волны на dλ.

Если применить это выражение для уравнения решетки, тогда получится формула:

Дисперсия угловая дифракционной решетки определяется по формуле выше. Видно, что величина D зависит от порядка m и от периода d.

Чем больше дисперсия D, тем выше разрешающая способность данной решетки.

Разрешающая способность решетки

Под разрешающей способностью понимают физическую величину, которая показывает, на какую минимальную величину могут отличаться две длины волны, чтобы их максимумы на дифракционной картине появлялись раздельно.

Разрешающая способность определяется критерием Рэлея. Он гласит: два максимума можно разделить на дифракционной картине, если расстояние между ними оказывается больше полуширины каждого из них. Угловая полуширина максимума для решетки определяется по формуле:

Δθ 1/2 = λ/(N*d*cos(θ m)).

Разрешающая способность решетки в соответствии с критерием Рэлея равна:

Δθ m >Δθ 1/2 или D*Δλ>Δθ 1/2 .

Подставляя значения D и Δθ 1/2 , получаем:

Δλ*m/(d*cos(θ m))>λ/(N*d*cos(θ m) =>

Δλ > λ/(m*N).

Это и есть формула разрешающей способности дифракционной решетки. Чем больше число штрихов N на пластинке и чем выше порядок дифракции, тем больше разрешающая способность для данной длины волны λ.

Дифракционная решетка в спектроскопии

Выпишем еще раз основное уравнение максимумов для решетки:

Здесь видно, что чем больше длина волны падает на пластинку со штрихами, тем при больших значениях углов будут появляться максимумы на экране. Иными словами, если через пластинку пропустить немонохроматический свет (например, белый), то на экране можно видеть появление цветных максимумов. Начиная от центрального белого максимума (дифракция нулевого порядка), дальше будут появляться максимумы для более коротких волн (фиолетовый, синий), а затем для более длинных (оранжевый, красный).

Другой важный вывод из этой формулы заключается в зависимости угла θ m от порядка дифракции. Чем больше m, тем больше значение θ m . Это означает, что цветные линии будут сильнее разделены между собой на максимумах для высокого порядка дифракции. Этот факт уже был освящен, когда рассматривалась разрешающая способность решетки (см. предыдущий пункт).

Описанные способности дифракционной решетки позволяют использовать ее для анализа спектров излучения различных светящихся объектов, включая далекие звезды и галактики.

Пример решения задачи

Покажем, как пользоваться формулой дифракционной решетки. Длина волны света, которая падает решетку, равна 550 нм. Необходимо определить угол, при котором появляется дифракция первого порядка, если период d равен 4 мкм.

Переводим все данные в единицы СИ и подставляем в это равенство:

θ 1 = arcsin(550*10-9/(4*10-6)) = 7,9o.

Если экран будет находиться на расстоянии 1 метр от решетки, то от середины центрального максимума линия первого порядка дифракции для волны 550 нм появится на расстоянии 13,8 см, что соответствует углу 7,9o.

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор. Она содержит систему щелей, которые разделяют непрозрачные промежутки.

Дифракционные решетки подразделяют на одномерные и многомерные. Одномерная дифракционная решетка состоит из параллельных прозрачных для света участков одинаковой ширины, которые располагаются в одной плоскости. Прозрачные участки разделяют непрозрачные промежутки. При помощи данных решеток наблюдения проводят в проходящем свете.

Существуют отражающие дифракционные решетки. Такая решетка представляет собой, например, полированную (зеркальную) металлическую пластинку, на которую нанесены штрихи при помощи резца. В результате получают участки, которые отражают свет и участки, которые свет рассеивают. Наблюдение при помощи такой решетки проводят в отраженном свете.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Период дифракционной решетки

Если ширину щели на решетки обозначим a, ширину непрозрачного участка - b, тогда сумма данных двух параметров - это период решетки (d):

Период дифракционной решетки иногда называют еще постоянной дифракционной решетки. Период дифракционной решетки можно определить как расстояние, через которое происходит повтор штрихов на решетке.

Постоянную дифракционной решетки можно найти, если известно количество штрихов (N), которые имеет решетка на 1 мм своей длины:

Период дифракционной решетки входит в формулы, которые описывают картину дифракции на ней. Так, если монохроматическая волна падает на одномерную дифракционную решетку перпендикулярно к ее плоскости, то главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

где - угол между нормалью к решетке и направлением распространения дифрагированных лучей.

Кроме главных минимумов, в результате взаимной интерференции световых лучей, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, в результате появляются дополнительные минимумы интенсивности. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; принимает любые целые значения кроме 0, Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Величина синуса не может превышать единицу, следовательно, число главных максимумов (m):

Примеры решения задач

ПРИМЕР 1

Задание Сквозь дифракционную решетку проходит пучок света, имеющий длину волны . На расстоянии L от решетки размещается экран, на который при помощи линзы формируют картину дифракции. Получают, что первый максимум дифракции расположен на расстоянии x от центрального (рис.1). Каков период дифракционной решетки (d)?
Решение Сделаем рисунок.

В основу решения задачи положим условие для главных максимумов картины дифракции:

По условию задачи речь идет о первом главном максимуме, то . Из рис.1 получим, что:

Из выражений (1.2) и (1.1) имеем:

Выразим искомый период решетки, получаем:

Ответ

Как найти период дифракционной решетки?

    ну стыдно не знать

    Судя по всему, что просто число единиц.
    Т.е., никакой специфической единицы измерения у него нет.
    http://dic.academic.ru/dic.nsf/bse/84886/Дифракционная
    Ну, по крайней мере, тут я прочитал, что R=mN, где m - просто целое число, а N - опять же число щелей, и поскольку никаких единиц измерения под ними не подразумевается, то и ожидать какую-то единицу измерения от их произведения тоже не следует.
    То же самое следует и из этой формулы "R=λ/dλ": это как время делить на изменение времени - будут просто единицы, если логика моя верна.

  • ДИФРАКЦИЯ СВЕТА

    в узком (наиболее употребительном) смысле - явление огибания лучами света контура непрозрачных тел и, следовательно, проникновение света в область геом. тени; в широком смысле - проявление волновых св-в света в условиях, близких к условиям применимости представлении геометрической оптики.
    В естеств. условиях Д. с. обычно наблюдается в виде нерезкой, размытой границы тени предмета, освещаемого удалённым источником. Наиболее контрастна Д. с. в пространств. областях, где плотность потока лучей претерпевает резкое изменение (в области каустической поверхности, фокуса, границы геом. тени и др.). В лабораторных условиях можно выявить структуру света в этих областях, проявляющуюся в чередовании светлых и тёмных (или окрашенных) областей на экране. Иногда эта структура проста, как, напр., при Д. с. на дифракционной решётке, часто очень сложна, напр. в области фокуса линзы. Д. с. на телах с резкими границами используется в инструментальной оптике и, в частности, определяет предел возможностей оптич. устройств.
    Первая элем. количеств. теория Д. с. была развита франц. физиком О. Френелем (1816), к-рый объяснил её как результат интерференции вторичных волн (см. ГЮЙГЕНСА - ФРЕНЕЛЯ ПРИНЦИП). Несмотря на недостатки, метод этой теории сохранил своё значение, особенно в расчётах оценочного характера.
    Метод состоит в разбиении фронта падающей волны, обрезанного краями экрана, на зоны Френеля.
    Рис. 1. Дифракц. кольца при прохождении света: слева - через круглое отверстие, в к-ром укладывается чётное число зон; справа - вокруг круглого экрана.
    Считается, что на экране вторичные световые волны не рождаются и световое поле в точке наблюдения определяется суммой вкладов от всех зон. Если отверстие в экране оставляет открытым чётное число зон (рис. 1), то в центре дифракц. картины получается тёмное пятно, при нечётном числе зон - светлое. В центре тени от круглого экрана, закрывающего не слишком большое число зон Френеля, получается светлое пятно. Величины вкладов зон в световое поле в точке наблюдения пропорциональны площадям зон и медленно убывают с ростом номера зоны. Соседние зоны вносят вклады противоположных знаков, т. к. фазы излучаемых ими волн противоположны.
    Результаты теории О. Френеля послужили решающим доказательством волновой природы света и дали основу теории зонных пластинок. Различают два вида Д. с.- д и ф р а кц и ю Френеля и дифракцию Фраунгофера в зависимости от соотношения между размерами тела b, на к-ром происходит дифракция, и величиной зоны Френеля?(zl) (а следовательно, в зависимости от расстояния z до точки наблюдения). Метод Френеля эффективен лишь тогда, когда размер отверстия сравним с размером зоны Френеля: b = ?(zl) (дифракция в сходящихся лучах). В этом случае небольшое число зон, на к-рые разбивается сферич. волна в отверстии, определяет картину Д. с. Если отверстие в экране меньше зоны Френеля (b<-?(zl), дифракции Фраунгофера), как, напр., при очень удалённых от экрана наблюдателя и источника света, то можно пренебречь кривизной фронта волны, считать её плоской и картину дифракции характеризовать угловым распределением интенсивности потока. При этом падающий параллельный пучок света на отверстии становится расходящимся с углом расходимости j = l/b. При освещении щели параллельным монохроматич. пучком света на экране получается ряд тёмных и светлых полос, быстро убывающих по интенсивности. Если свет падает перпендикулярно к плоскости щели, то полосы расположены симметрично относительно центр. полосы (рис. 2), а освещённость меняется вдоль экрана периодически с изменением j, обращаясь в нуль при углах j, для к-рых sinj=ml/b (m=1, 2, 3, . . .).
    Рис. 2. Дифракция Фраунгофера на щели.
    При промежуточных значениях j освещённость достигает макс. значений. Гл. максимум имеет место при m=0 и sinj=0, т. е. j=0. С уменьшением ширины щели центр. светлая полоса расширяется, а при данной ширине щели положение минимумов и максимумов зависит от l, т. е. расстояние между полосами тем больше, чем больше l. Поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов; гл. максимум будет общим для всех l и представляется в виде белой полоски, переходящей в цветные полосы с чередованием цветов от фиолетового к красному.
    В матем. отношении дифракция Фраунгофера проще дифракции Френеля. Идеи Френеля математически воплотил нем. физик Г. Кирхгоф (1882), к-рый развил теорию граничной Д. с., применяемую на практике. Однако в его теории не учитываются векторный характер световых волн и св-ва самого материала экрана. Математически корректная теория Д. с. на телах требует решения сложных граничных задач рассеяния эл.-магн. волн, имеющих решения лишь для частных случаев.
    Первое точное решение было получено нем. физиком А. Зоммерфельдом (1894) для дифракции плоской волны на идеально проводящем клине. На больших по сравнению с l расстояниях от острия клина результат Зоммерфельда предсказывает более глубокое проникновение света в область тени, чем это следует из теории Кирхгофа.
    Дифракц. явления возникают не только на резких границах тел, но и в протяжённых системах. Такая объёмная Д. с. обусловливается крупномасштабными по сравнению с l неоднородностями диэлектрич. проницаемости среды. В частности, объёмная Д. с. происходит при дифракции света на ультразвуке, в голограммах в турбулентной среде и нелинейных оптич. средах. Часто объёмная Д. с., в отличие от граничной, неотделима от сопутствующих явлений отражения и преломления света. В тех случаях, когда в среде нет резких границ и отражение играет незначит. роль в характере распространения света в среде, для дифракц. процессов применяют асимптотич. методы теории дифференциальных ур-ний. Для таких приближённых методов, к-рые составляют предмет диффузионной теории дифракции, характерно медленное (на размере Я) изменение амплитуды и фазы световой волны вдоль луча.
    В нелинейной оптике Д. с. происходит на неоднородностях показателя преломления, к-рые создаются самим распространяющимся через среду излучением. Нестационарный характер этих явлений дополнительно усложняет картину Д. с., в к-рой кроме углового преобразования спектра излучения возникает и частотное преобразование.

Плоская прозрачная дифракционная решетка представляет собой систему параллельных щелей одинаковой ширины “а”, находящихся на равных расстояниях друг от друга “b” и лежащих в одной плоскости. Она изготавливается путем нанесения непрозрачных штрихов на прозрачной пластине, либо шероховатых, рассеивающих штрихов на тщательно отполированной металлической пластине и применяется в проходящем или отраженном свете. Лучшие дифракционные решетки, изготавливающиеся в настоящее время, содержат до 2000 штрихов на 1 мм. Дешевые копии с таких решеток – реплики, получают на желатине или пластмассе.

Дифракционная картина при прохождении света через дифракционную решетку (систему из N щелей) значительно усложняется. Колебания, приходящие от разных щелей, являются когерентными, и для нахождения результирующей амплитуды и интенсивности необходимо знать фазовые соотношения между ними. Условие ослабления колебаний от одной и той же щели (51) является условием ослабления колебаний для каждой щели дифракционной решетки. Его поэтому называют условием главных минимумов:

Кроме того, происходит взаимодействие колебаний одной щели с колебаниями других щелей. Найдем условие, при котором происходит взаимное усиление колебаний, исходящих из всех щелей. Пусть на дифракционную решетку падает нормально монохроматический свет с длиной волны λ (рисунок 18). Как и в случае одной щели, из всех дифрагирующих волн рассмотрим волны, идущие в направлении угла α к нормали:


Рисунок 18

Оптическая разность хода для волн, исходящих из крайних точек соседних щелей (на рисунке 18 это 1 и 2, 2 и 3, 3 и 4), равна:

, (57)

где а + b = d – период решетки.

Разность фаз для этих же волн определяется соотношением:

. (58)

Для нахождения амплитуды результирующего колебания воспользуемся методом векторных диаграмм. Разобьем каждую щель на отдельные участки - зоны, параллельные краям щели. Амплитуду колебаний, создаваемых одним участком в точке наблюдения, обозначим DA i . Тогда амплитуда результирующих колебаний от всей щели будет равна:

Так как все щели одинаковы и освещаются параллельным пучком лучей, то в точке наблюдения амплитуды результирующих колебаний и от других щелей такие же, т.е.

Поэтому амплитуда результирующего колебания от всех щелей решетки равна их сумме:


Но фазы результирующих колебаний соседних щелей отличаются на Dj (см. условие (58)), поэтому амплитудные вектора располагаются под углом Dj друг к другу, как это показано на рисунке 19, а.


Рисунок 19

Максимальной амплитуда будет в случае, когда амплитудные вектора от каждой щели расположатся вдоль одной прямой (рисунок 19, б),т.е. сдвиг фаз между результирующими колебаниями соседних щелей будет кратен 2p:

где m = 0, 1, 2, …

Условие (60) является условием главных максимумов. Для оптической разности хода оно запишется так (см. (58)):

, (61)

где m – порядок главного максимума, принимает те же значения, что и в условии (60). Наибольший порядок максимума определяется из условия:

.

Амплитуда результирующих колебаний от всех щелей в этом случае будет равна:

где А 1 a – амплитуда результирующих колебаний от одной щели, идущих в направлении угла α, N – число щелей в решетке.

Так как интенсивность пропорциональна квадрату амплитуды, то интенсивность главных максимумов пропорциональна квадрату числа щелей:

, (62)

где I 1 a – интенсивность колебаний, пришедших в данную точку экрана от одной щели.

Условие наибольшего ослабления колебаний от всех щелей, условие дополнительных минимумов, наблюдается в случае, когда амплитуда результирующих колебаний равна 0, т.е. когда суммарный сдвиг фаз колебаний соседних щелей кратен 2p:

, (63)

а оптическая разность хода волн от крайних точек соседних щелей равна:

, (64)

где n = 1, 2, ..., N – 1, N + 1, …, 2N – 1, 2N + 1, ..., mN – 1, mN + 1, … – порядок дополнительных минимумов, N – число щелей в решетке,

В условиях (63) и (64) n не может быть кратно числу щелей, так как они переходят тогда в условия главных максимумов. Из условий (63) и (64) следует, что между соседними главными максимумами наблюдается N – 1 дополнительный минимум и N – 2 дополнительных максимума.

Распределение интенсивности света, наблюдаемое на экране в фокальной плоскости линзы, стоящей за решеткой с четырьмя щелями, представлено на рисунке 20. Пунктирная кривая дает распределение интенсивности одной щели, умноженной на N 2 , сплошная кривая соответствует распределению интенсивности для дифракционной решетки.


Рисунок 20

В центре картины наблюдается максимум нулевого порядка, вправо и влево от него симметрично располагаются последующие порядки максимумов. Ширина максимума нулевого порядка может быть определена так же, как и ширина максимума для одной щели (см. соотношение (56)):

где α – в данном случае угол, под которым наблюдается первый дополнительный минимум т.е.

.

. (65)

Из соотношения (65) следует, что чем больше общее число щелей в решетке, тем уже максимум. Это относится не только к главному максимуму нулевого порядка, но и ко всем главным и дополнительным максимумам.

Некоторые главные максимумы не обнаруживаются, так как они совпадают с главными минимумами (в данном случае максимум второго порядка). При большом числе щелей в решетке интенсивность дополнительных максимумов настолько мала, что они практически не обнаруживаются, и на экране наблюдаются только главные максимумы, расположение которых зависит от постоянной решетки и длины волны падающего на решетку монохроматического света.

При освещении решетки белым светом вместо одиночных главных максимумов первого и более высокого порядков появляются спектры (рисунок 21).


Рисунок 21

Максимум нулевого порядка в спектр не разлагается, так как под углом α = 0 наблюдается максимум для любых длин волн. В спектре каждого порядка максимум для более коротких волн наблюдается ближе к нулевому максимуму, для более длинных – дальше от него.

С ростом порядка спектра спектры становятся шире.

Способность дифракционной решетки разлагать падающий на нее немонохроматический свет в спектр характеризуется угловой или линейной дисперсией. Угловая дисперсия решетки характеризуется углом, на который смещается максимум спектральной линии при изменении длины волны на единицу, т.е.

где Δα – угол, на который смещается максимум при изменении длины волны спектральной линии на Δλ.

Угловая дисперсия зависит от порядка спектра m и постоянной решетки d:

. (67)

Формула (67) получена дифференцированием условия главного максимума, т.е. (61). Линейная дисперсия решетки определяется соотношением:

где Dl – расстояние между двумя спектральными линиями, длины волн которых отличаются на Δλ.

Можно показать, что

где F – фокусное расстояние линзы, с помощью которой наблюдается дифракционная картина.

Другой характеристикой решетки является ее разрешающая спосо6ность. Она определяется отношением длины волны в данной области спектра к минимальному интервалу длин волн, разрешаемому с помощью данной решетки:

По условию Рэлея две близкие спектральные линии считаются разрешенными (видны раздельно) (рисунок 22), если максимум одной совпадает с ближайшим минимумом другой, т.е.

отсюда получаем:

. (70)

Разрешающая способность зависит от порядка спектра и общего числа щелей в решетке.

Способность дифракционной решетки разлагать белый свет в спектр дает возможность использовать её в качестве диспергирующего устройства в спектральных приборах.


Рисунок 22

Зная постоянную решетки и измерив угол дифракции, можно определить спектральный состав излучения неизвестного источника излучения. В данной лабораторной работе дифракционная решетка используется для определения длины волны.

Описание установки

Для точного измерения углов дифракции в данной лабораторной работе используется прибор, называемый гониометром. Схематическое устройство гониометра приведено на рисунке 23.

Основные части гониометра: закрепленные на общей оси круг с делениями – лимб, коллиматор, зрительная труба и столик с дифракционной решеткой.

Коллиматор предназначен для создания параллельного пучка лучей. Он состоит из наружного тубуса, в котором закреплена линза Л, и внутреннего с входной щелью S. Ширина щели может регулироваться микрометрическим винтом. Щель располагается в фокальной плоскости линзы Л, поэтому из коллиматора выходит параллельный пучок лучей.


Рисунок 23

Зрительная труба также состоит из двух тубусов: наружного, в котором закреплен объектив М, и внутреннего с закрепленным в нем окуляром N. В фокальной плоскости объектива располагается визирная нить. Если прибор отъюстирован, то визирная нить и изображение освещенной щели коллиматора в поле зрения окуляра видны отчетливо.

Лимб разделен на 360 градусов, расстояние между градусными делениями разделено на две части по 30 минут каждая, т.е. цена деления лимба 30 минут. Для более точного отсчета углов имеется нониус Н, имеющий 30 делений, общая длина которых составляет 29 делений лимба. Поэтому точность деления нониуса Dl равна:

,

так как ,

где l – цена деления лимба, n – число делений нониуса,

с – цена деления нониуса.

Если цена деления лимба 30 минут и нониус содержит 30 делений, то точность деления нониуса равна одной минуте.

Отсчет угла гониометра производят следующим образом. Отмечают число целых делений по шкале лимба напротив нуля нониуса (отсчет берется от нуля нониуса), затем делают отсчет по шкале нониуса: выбирают такое деление нониуса, которое совпадает с каким-либо делением шкалы лимба. Измеренный угол будет равен:

, (71)

где k – число делений по шкале лимба;

m – число делений нониуса до деления, точно совпадающего с делением шкалы лимба;

l – цена деления лимба;

Δl – точность нониуса.

Для случая, приведенного на рисунке 24, число делений лимба до 0 нониуса 19,5, что соответствует 19 градусам и 30 минутам.


Рисунок 24

Нуль нониуса не совпадает с делениями лимба, совпадает пятое деление нониуса. Следовательно, угол отсчета равен 19 градусам и 35 минутам.

На столике гониометра закреплена дифракционная решетка так, что ее плоскость, обращенная к зрительной трубе, совпадает с диаметром столика. Столик гониометра устанавливается таким образом, чтобы дифракционная решетка была перпендикулярна оси коллиматора. Щель коллиматора освещается ртутной лампой.

Если зрительная труба установлена по оси коллиматора, то в поле зрения видно изображение щели – главный максимум нулевого порядка. При смещении зрительной трубы вправо или влево можно увидеть сначала синюю, затем зеленую и желтую линии спектра первого порядка. При дальнейшем поворачивании зрительнойтрубы в ее полезрения окажутся в той жепоследовательности спектральные линиивторого порядка, затем третьего и т.д.

Для определения угла дифракции какой-либо волны необходимо навести визирную нить зрительной трубы на середину линии соответствующего цвета слева от нулевого максимума, закрепить винт, фиксирующий положение трубы, и произвести отсчет угла, например b 1 , затем, освободив винт, навести визирную нить зрительной трубы на середину линии такого же цвета в том же порядке спектра справа от нулевого максимумаи, закрепив винт, сделать отсчет угла b 2 . Разность отсчетов даст удвоенный угол дифракции (рисунок 25), а угол дифракции будет равен:


Рисунок 25